

ISSN 1461-6122


[image: image40.png][ SPARQL

Hast [locakhost

Database

preis

<hite s pphodh, org/2008 /1ty
select 7a1 7a2

( 7apTable

261 pColunn AT,

262 pColumn "A2

2apRon 7

2171 781

2272}





Computing and Information Systems Technical Reports

No. 38
Malcolm Crowe
The Pyrrho Database Management System v1.3
[image: image2.jpg]



January 2007

Contents

41. Introducing Pyrrho


41.1 Features of Pyrrho


51.2 Pyrrho’s philosophy


51.4 How to read this manual


51.5 About this version


62. Obtaining Pyrrho


62.1 Downloading the Package


62.2 Pyrrho editions


82.3 System requirements


82.4 Performance measures


82.5 Licensing and Copyright


82.6 Importing existing data


92.7 Converting existing database applications


102.8 Master-slave database architectures


112.9 Datacenter configuration


123. Installing and starting the server


123.1 Command line options


133.2 Server account


133.3 Database folder


143.4 Security considerations


143.5 Forensic investigation of a database


153.6 Pyrrho as a Web server


193.7 Character Sets and Collations


193.8 Localisation


203.9 Pyrrho DBMS architecture


214. Pyrrho client utilities


214.1 The Pyrrho Connection library


224.2 Installing the client utilities


224.3 PyrrhoCmd


244.4 PyrrhoMgr


284.5 Rdf and SPARQL


305. Database design and creation


305.1 Creating a Database


305.2 Creating database objects


325.3 Altering tables


335.4 Sharing a database with other users


345.5 Authorities and Roles


355.6 Stored Procedures and Functions


405.7 Structured Types


405.8 Triggers


415.9 XML and XPath


435.10 RDF and Pyrrho


465.11 OLAP and window functions


476. Pyrrho application development


476.1 Getting Started


476.2 Using the PyrrhoLink DLL


476.3 Opening and closing a connection


486.4 The connection string


486.5 Commands


496.6 DataReaders


496.7 Transactions


506.8 External procedures


516.9 The Connection String Designer


526.10 PyrrhoDataAdapter


536.11 ASP.NET and PyrrhoDataSource


586.12 Using PHP


596.13 PyrrhoDbClient


596.14 The Java Persistence Library


667. SQL Syntax for Pyrrho


667.1 Statements


677.2 Data Definition


707.3 Access Control


707.4 Type


717.5 Data Manipulation


737.6 Value


757.7 Boolean Expressions


757.8 SQL Functions


777.9 Statements


787.10 XML Support


807.11 SQL2003 compliance


867.12 Proposed additions to the SQL2003 standard


907.13 Proposed simplification of the SQL2003 standard


918. Pyrrho Reference


918.1 Sys$ table collection


968.2 Log$ table collection


1018.3 Table and Cell Logs


1028.4 Pyrrho Class Library Reference


1069. Pyrrho Database File Format


1069.1 Data Formats


1089.2  Record formats


11010. Pyrrho Enterprise Edition


11010.1 The Enterprise server account


11010.2 The configuration file


11110.3 The Pyrrho Enterprise Manager and Utilities


11410.4 The Event log


11511. Pyrrho Mobile Edition


11511.1 Obtaining Pyrrho Mobile edition


11511.2 Configuring Pyrrho Mobile edition


11511.3 Using Pyrrho Mobile edition


11712. Pyrrho Datacenter Edition


11712.1 PyrrhoDBMS installation


11712.2 PyrrhoDBMS configuration


11812.3 PyrrhoSvr Datacenter Edition


11812.4 The event log


11812.5 Enterprise Tools and the Datacenter Edition


11913. Troubleshooting


12214. End User License Agreement


12214.1 Binary distribution: all editions except Open Source


12214.2 Source distribution: Open Source Pyrrho edition


123References


124Index to Syntax




1. Introducing Pyrrho 

Pyrrho is a newly-designed compact and efficient relational database management system for the .NET framework. 

Pyrrho is available in several versions. The range extends from a version for personal and educational use (free), up to a fully-featured Datacenter Edition. There are several binary versions of the DBMS server, depending on the installed version of the .NET framework. Otherwise, all versions are binary compatible and platform independent.

1.1 Features of Pyrrho

Pyrrho is a rigorously developed relational database management system that can run on small computers, even mobile phones, but can also scale up to large enterprise uses. It assumes the .NET framework. For large databases it needs a lot of main memory (RAM). For best results the computer main memory should be about twice the size of the database.
Pyrrho is designed for business uses. It is most suited to data that includes a regular stream of new information that is to be kept indefinitely, for example, customer data, orders or accounting transactions. It has an enhanced authorisation model and built-in auditing facilities, and supports Semantic Web efforts by including implementations of XPath and Sparql in line with the W3C standards. Pyrrho also has some experimental functions for temporal data (see section 7.12). 
Pyrrho supports the usual SQL database language, compatible with the SQL2003 standard. It is stricter than SQL2003: for example, integrity constraints cannot be deferred, and transaction isolation cannot be circumvented. In Pyrrho the default is that data types are variable-length. (There are practical limits, e.g. integers can be up to 2040 bits. For division of non-integer quantities Pyrrho sets a default precision of 13 digits, but higher precision can be specified. If the specified precision of reals or actual values of integers are sufficiently small, hardware arithmetic is used.) 
Pyrrho uses a full multi-user client-server architecture. The server uses a robust TCP-based protocol for communication with clients. The usual .NET data client interfaces, such as DataReader, IDbCommand, IDbTransaction, are supported by the Pyrrho connector.

Pyrrho supports a full transaction model. Concurrent transactions are atomic, consistent, isolated  durable and serialisable. Optimistic transaction handling is used, avoiding locking. 
Pyrrho supports authority, user and timestamp recording for all changes to the database. The user and timestamp for all changes to the database are recorded together with the authority for the change. Authority is a novelty in Pyrrho, which identifies the reason for any change to the database – if the operation is routine the authority will simply identify a business process. See section 2.6 and Chapter 5.
Pyrrho automatically maintains a full history for all data. No data is ever lost. Deleted or modified data can always be recovered if required. This information is available to applications through the use of some additional system tables (See Chapter 8), and it is also possible to examine a database as it was at any time in the past.
The implementation of Pyrrho is in the C# language, so works on the .NET Framework on Windows and Linux. Pyrrho’s data is located normally in a single file per database. Pyrrho uses variable-length records and truncates short or null values.  Files are split into 32GB segments for convenience of archiving if necessary. Data files are portable between locales and machine platforms, and in particular are independent of machine or platform dependencies such as the number of bytes used for integers, doubles etc.
Pyrrho is generally faster than its commercial rivals, and writes to the disk just once per transaction. It performs well in standard benchmark tests. 

Pyrrho supports threading and clusters. The database server uses threading internally, and normally runs on a desktop computer. The architecture can be scaled to high-performance computer clusters. The technology underlying the Pyrrho database engine is subject to a patent application: British Patent Application No. 0423146.0 University of Paisley: “Improvements in and Relating to Database Technology”.

For the available versions of Pyrrho, including support and source code options, see Chapter 2.

1.2 Pyrrho’s philosophy

This database management system is named after an ancient Greek philosopher, Pyrrho of Elis (360-272BC), who founded the school of Scepticism. We know of this school from writers such as Diogenes Laertius and Sextus Empiricus, and several books about Pyrrhonism (e.g. Floridi) have recently appeared.

And their philosophy was called investigatory, from their investigating or seeking the truth on all sides. 

(Diogenes Laertius p 405)
Pyrrho’s approach was to support investigation rather than mere acceptance of dogmatic or oracular utterance. 

Accordingly in this database management system, care is taken to preserve any supporting evidence for data that can be gathered automatically, such as the record of who entered the data, when and (if possible) why; and to maintain a complete record of subsequent alterations to the data on the same basis. The fact and circumstances of such data entry and maintenance provide some evidence for the truthfulness of the data, and, conversely, makes any unusual activity or data easier to investigate. This additional information is made available, normally to the database owner, via SQL queries through the use of system tables, as described in Chapter 8.2 of this manual. Such automatic recording can of course be added to in the design of databases and applications.

In other ways Pyrrho supports investigation. For example, SQL2003 does not support the renaming of objects. To rename a table, a new table with the new name must be created, all the data copied into it, and then the old table dropped. Such actions destroy object identity and impede investigation. In Pyrrho, by contrast, tables and other database objects can be renamed and otherwise modified.

The logo on the front cover recalls the ancient “Greek key” design and the initial letters of Pyrrho, and suggests security through interlocking elements.

1.4 How to read this manual

Each chapter begins with a “getting started” section, and most will have sections towards the end intended for developers or enterprise users. The “getting started” sections contain simple examples which relate to sample databases provided in the distribution. The reader is advised to skip over the later sections of chapters on a first reading.

The typographical conventions are as follows: Courier New font is used to indicate computer input or output. Bold face type is used for input, and normal for output, and italic font to indicate items that vary depending on user choices, as in

PyrrhoCmd –h:host database
SQL> select * from table
The current version of the .NET framework on Linux requires the above command to be given as

mono PyrrhoCmd.exe –h:host database
Similar incantations are needed at present for every .NET executable under Linux. This will not be mentioned every time in this manual, which will generally give the short (Windows) version of commands. Some versions of Linux can be configured with add-ins so that the “mono” prefix is not required.

1.5 About this version

All databases developed under previous versions should still work with the latest version. However, when versions change, applications should be recompiled so that their version of PyrrhoLink matches the server. 0.6 provides support for XPath/XQuery, RDF, and SPARQL. With version 1.0 the network-level code has been improved and the Datacenter edition released. 1.1 adds OLAP functions and extended grouping operations, and improves non-reserved word behaviour. 1.2 adds some temporal features.

Version 1.3 includes an “Open Source” edition (for rules see section 2.2.6) which also supports the Java Persistence Query Language.

2. Obtaining Pyrrho

Pyrrho is available as a free and very small download for the .NET framework: this free version has a built-in limit on database size. The professional edition is very price-competitive, and has no practical limit on sizes of memory or data files. Entertprise, Mobile and Datacenter editions are also available. Later sections of this chapter discuss issues associated with moving an existing database to Pyrrho. From version 1.3 there is also an Open Source edition, which is discussed in section 2.2.6.

2.1 Downloading the Package

The Personal and Open Source editions of Pyrrho are available from www.pyrrhodb.org for immediate download. Provided the .NET framework has been installed, it is possible to extract all of the files in the distribution to a single folder, and start to use Pyrrho in this folder without making any system or registry changes. The other editions can be downloaded from www.pyrrhodb.com, but also require a key file from our commercial partners www.shareit.com. Their different features are described below and in chapters 10-12.

Note that there are three domain names for Pyrrho: www.pyrrhodb.com, www.pyrrhodb.org, and www.pyrrhodb.net . There is little difference at present but over time we expect to support the larger editions of Pyrrho on the .com site, host the free edition and the Pyrrho developer community on .org, and eventually provide a network storage service on .net. So the occurrence of one of these names rather than another in this booklet is not usually a mistake.

2.2 Pyrrho editions

All editions of Pyrrho use the same relational engine and API. Databases and applications interoperate freely between editions other than Open Source Pyrrho (subject to the size limit on the Personal edition of Pyrrho).

All editions of the Pyrrho server enforce ACID transactions, integrated security and multi-user access. Mobile and Datacenter editions are planned for release in 2006: for Windows these also come as Windows Service versions. 

Versions of Pyrrho linked for the full .NET framework include a Web server: this is not available with the compact (CF) .NET framework. This Web server gives the personal edition a low-security web interface as a simple alternative to the client utilities: see section 3.1 and 3.6. The other editions treat all access using the web interface as “guest”, since secure user authentication is not really possible on the Internet. The client library and utilities provide much better security, since they insert the user id in an encrypted connection string to make user id spoofing more difficult.

2.2.1 Pyrrho Personal edition

The Personal edition is free to download, redistribute and use but is limited to databases of up to 8MB – see section 2.4.

The download includes the executable binaries of the server, three client utilities (Chapter 4), and this document. The executables work on all editions of Windows and Linux (Mono). 
The Personal edition is limited to small databases (database files of up to 8MB). It supports all the same data formats and SQL statements as the other editions, and uses the same relational engine. 

The distribution contains the components required for Pyrrho application development for the .NET Framework SDK. See Chapter 6.

No technical support is available for Personal edition, but self-help newsgroup communities are hosted on www.pyrrhodb.org. Comments on the performance of Pyrrho and its utilities are welcome and all will be replied to. 

Updates to the executables are free and should be obtained direct from www.pyrrhodb.com, which also provides links for upgrading to the other editions. 
Databases or applications developed for the personal edition can be used with all updates and upgrades.  Subject to the limitation on size, databases or applications developed for the other editions of Pyrrho can be used with the Personal edition of the same or later versions. The client utilities work with all versions of the server.

2.2.2 Pyrrho Professional Edition

The Professional edition is suitable for commercial use and on 64-bit platforms has no practical limit on database size. Each purchased copy is licensed for use on one named server. See Section 2.3. 

The download contains the executable binaries and this documentation, as in section 2.2.1. The client utilities can be used for database creation and forensic examination, and backup and recovery can be performed by file copying.

Technical support is available on a consultancy basis. Updates and upgrades are free.

2.2.3 Pyrrho Enterprise Edition

The Enterprise edition includes a suite of administrative utilities (see Chapter 10). These support secure creation, backup, verification and recovery of database files, and security auditing. Each purchased copy is licensed for use on one named server.

Pyrrho Enterprise server can be installed to run as a service or daemon. For Windows this involves a specially linked version which has an installer.

Technical support is included on installation, configuration, and tool usage. Technical support for application development is available on a consultancy basis. Updates and upgrades are free.

2.2.4 Pyrrho Mobile Edition

The Mobile edition is suitable for mobile computing where the number of write transactions from any one mobile computer is small, and these can be committed over the network.

The concept is that each mobile computer will run its own server, optionally obtaining database content (a copy at a recent date) from fixed media. It will then bring itself up-to-date using an Enterprise server, to which any further updates can be committed (and monitor further changes to the database in question). This arrangement minimizes the network traffic in the case where the mobile user wants to consult a lot of relatively static information, but where having real-time up-to-date information and enterprise transaction commit is still important.

Pyrrho’s unique features make such a radical vision entirely achievable, and an edition along these lines will be available by early 2006. Each Mobile edition license is specific to one device.

2.2.5 Pyrrho Datacenter Edition

Finally, the Datacenter edition, described in Chapter 12, is optimized for use on supercomputing clusters. There is one broker, and multiple servers.

Pyrrho Datacenter Edition includes all of the above tools, utilities, plug-ins, technical support and security options.  Each Datacenter edition license is specific to the broker, and is installed on the cluster.

2.2.6 Open Source Pyrrho

The Open Source Edition is free to download, and includes the complete C# source for a version of Pyrrho that is functionally equivalent to the Professional edition. It is not interoperable with other editions of Pyrrho, however, as it uses different encryption algorithms. This is to prevent a knowledge of the source code being used to circumvent the security and integrity mechanisms of the other editions.

You are allowed to view and test the code, and incorporate it in other software, provided you do not create a competing product. You can redistribute any of the files available on the Pyrrho website in their entirety. Otherwise, like other editions of Pyrrho, use of this open source edition is subject to restrictions of section 2.5, and any uses other than those described here requires a license from the University of Paisley.

The Open Source edition of Pyrrho also includes a Java Persistence class library for Java clients, in source form. This Java client is not available for other editions of Pyrrho because it is easy for Java clients to pretend to be someone else.

2.3 System requirements

The .NET Framework version 2.0 or greater (available from www.microsoft.com for Windows or www.go-mono.com for Linux) is required. The executables are specific to particular versions of the .NET framework, but are otherwise platform-independent. Database files are machine-independent and can be transferred between Windows and Linux or between different machine architectures, provided only that the .NET framework or Mono is installed first.

A minimum of 12MB of memory is required for the server process, however if the database holds xMB of data then at least 2xMB of main memory is recommended. For temporal tables (for example, scientific measurements) it is possible to configure Pyrrho Enterprise and DataCenter editions to ignore records in specific tables that are older than a certain date, and this allows some control of memory requirements.

1MB of space is required for the executables, however additional non-volatile storage space is required for the database files.

2.4 Performance measures

Currently PyrrhoSvr.exe is approximately 480KB, and when running the server process starts out with about 12MB of memory, but requires approximately as much additional memory as the size of the database file.

Database files are generally smaller than those of other database products. Files do not contain any empty space, so an empty database file is less than 1KB. Database files do grow larger if there are many updates because Pyrrho maintains a full historical record.

Memory is required for current data, so if many records in the database have been deleted, or much of the database file consists of updates, the working memory required will be less than the size of the database file. 

There is an option to minimise disk reading, and in this case the entire contents of the database file are cached in memory: this approximately doubles the amount of memory required. In situations where virtual disks are in use, the “minimise disk reading” option is not necessary.

2.5 Licensing and Copyright

Pyrrho is intellectual property of the University of Paisley, United Kingdom. The associated documentation and source code, where available, are copyright of the University of Paisley. Your use of this intellectual property is governed by a standard end-user license agreement, which permits the uses described above. All other use requires a license from the University of Paisley.

Pyrrho depends on the .NET class libraries, which are royalty-free. Pyrrho conforms to the extent described herein to the SQL2003 standard, which is available from the standards bodies (ISO and national bodies).

2.6 Importing existing data

The PyrrhoMgr utility includes powerful facilities for importing existing data to Pyrrho, and these are described in Chapter 4. 

When importing tables from an existing database, it is good to take the opportunity for some minor redesign. For example, additional integrity constraints can be added, or data types can be simplified, for example by relaxing field size constraints. Keywords that imply such sizes, e.g. DOUBLE PRECISION, BIGINT etc are not supported in Pyrrho, which provides maximum precision by default. National character sets are deprecated since they make data locale-specific: universal character sets are used by default.

A more important area for attention is Pyrrho’s security model. This offers an opportunity for improving the security of the business process. Pyrrho’s default settings are that the database creator is allowed to do anything with a default authority, and this will generally allow all desired operations to be performed. But database administrators should take advantage of Pyrrho’s facilities here. Full details are given in Chapter 5, but the following notes provide an executive-level overview of the approach.

The first thing to note is that Pyrrho expects the operating system to handle user authentication so that there is no way for a user to pretend to be someone else: a custom encryption of the connection string is used to ensure this. There is an implicit business requirement to know which staff took the responsibility for data changes (corresponding to initials in former paper-based systems), and Pyrrho’s approach is that it is undesirable for the database management system to force anonymity on such operations by disguising the staff responsible behind a faked-up application identity. 

This means that users of the database must be identified and granted permissions. Where the number of authorised staff is large, mechanisms for authorising new users can be automated. Generally it is useful to use the role mechanism to simplify the granting of groups of permissions to the users. Generally a role should be created with the same rights as each “application id” in the legacy system.

Existing users and roles can be imported from the existing database: assuming users are identified in the existing database by their login identities. Where applications have been given user identities in the legacy system, this should generally be replaced by authorities, which should probably be broken down to business processes.

2.7 Converting existing database applications

Stored procedures and view definitions will need to be converted in general since Pyrrho uses the SQL2003 convention whereby identifiers are converted to upper case (not case-sensitive) unless they are enclosed in double quotes. Double-quoted identifiers can include layout and special characters. The use of square brackets instead of double quotes is not supported. Stored procedures must conform to the syntax specified in SQL2003 – Persistent stored modules, and are detailed in Chapter 7.

Pyrrho does not support the use of embedded SQL in programming languages, and instead uses the simple .NET programming interface described in Chapter 6. In general, applications will need to be converted to the .NET framework, where numerous programming languages are supported. 

The biggest conceptual hurdle in developing applications for Pyrrho is the use of optimistic transactions. It is very important for programmers to accept this approach as a fact of life, explained in the following paragraphs, and not try to imitate a locking model.

All database architectures today support the ACID properties of transactions (atomicity, consistency, isolation and durability), which are widely considered mandatory for database engines. Database products that use pessimistic locking (such as SQL Server or Oracle) acquire these locks on behalf of transactions by default, and it is not usually necessary for an application to deal with these issues directly. In a pessimistic locking product, transactions can be delayed (blocked) while waiting for the required locks to become available.

A transaction can fail because it conflicts with another transaction. For example, with pessimistic locking, the server may detect that two (or more) transactions have become deadlocked, that is, all of the transactions in the group is waiting for a lock that is held by another transaction in the group. In these circumstances, the server will abort one of the transactions, and reclaim its locks, so that other transactions in the group can proceed.

With pessimistic locking, if a transaction reaches its commit point, the commit will generally succeed. If it does not complete, it retains locks on database resources until it is rolled back. With SQL Server, for example, once a transaction T begins, it acquires locks on data that it accesses. If it updates any data, it acquires an exclusive lock on the data. Until T commits or is rolled back, no other transaction can access any data written by T or make any change to data read by T. 

With optimistic locking, the first sign of failure may well be when the transaction tries to commit. A transaction will fail if it tries to make a change that conflicts with a change made by another transaction: such a conflict may only become apparent when an attempt is made to commit the transaction. Users of SQL Server can best understand how optimistic transactions work by considering what happens when they use Enterprise Manager to update their database. Enterprise Manager does not maintain locks on data it displays, and allows the user to change data or metadata interactively. But if the user attempts to change an entry that has been modified since Enterprise Manager last accessed it, the attempted update will fail, and Enterprise Manager will display a message box explaining what has happened.

In both cases, it is important for database applications to be prepared to restart transactions. In the case of pessimistic transactions this would normally follow deadlock detection or timeout. With pessimistic locking an attempt could simply be made to re-acquire the same locks: this step could be performed automatically by the server. However, it is not good practice for the transaction’s sequence of SQL statements to be simply replayed, since generally the state of the database will have changed (this is why the transaction failed), and the application should start again to see what to do in this new situation..

In the classic transaction example of withdrawing money from a bank account, a transaction for making a transfer might include an SQL statement of the form “update myaccount set balance=balance-100” or “update myaccount set balance=3456”. Writing SQL statements in the first form makes them apparently easier to restart, but the point being made here is that it should be the client application’s responsibility to decide if the statements should simply be replayed on restart. The server should not simply make assumptions about the business logic of the transaction. Pyrrho transaction checking includes checking that data read by the transaction has not be changed by another transaction.

2.8 Master-slave database architectures
A feature of Pyrrho is the availability of the complete history of the database. This means that unless the steps taken in this section are adopted, ad-hoc tables constructed for data analysis and for other purposes will be persisted in the historical record. This is less of a nuisance than might appear: for example, dropping a table called Fred means that the table name Fred can be used subsequently for a new table – names of database objects only need to be currently unique, not historically unique. Nevertheless, if the historical record of the database becomes a source of pride, there can be some irritation that users are polluting this history with their ad-hoc tables. 

Accordingly, Pyrrho has a facility to connect to several databases at once. New database objects such as tables created during such a session will be added to the first-named database, while objects in the other databases remain accessible subject to the permissions that have been granted to the user. Connections can be opened and closed for very little cost, since the database file is only fully processed the first time the server accesses it.

For example, a connection list is of form “Files=A,B,C,D”, would be appropriate for a connection for performing some sort of data analysis on database D, using tools stored in database C, where database B contains partially-completed analyses, and database A is being used for temporary results that will be deleted at the end of a session. Database B can be archived and a fresh analysis database constructed for the next period of analysis, while the tools in C are kept under revision for future use, separate from the live database D. 

With this scenario, connections of form “Files=D” would be used for normal business operations on D, connections of form “Files=C,D” would be used for adding new tool objects such as stored procedures or views useful for data analysis, and connections of form “Files=B,C,D” would be used to create the analysis tables. B and C would probably not be usable on their own, but in Pyrrho it is perfectly acceptable for a stored procedure in C to reference an object in B.

With the use of operating system integrated user identities, the user identity can be expected to be valid in all databases involved in the connection. Authorities are a different matter. Generally at most one of the databases will be modified in any transaction, and the authority string chosen for the connection should be the correct one for such a modification. It is not expected or required that authority identifiers in different databases should match in any way.

There are some limitations on usage in such multi-database connections: 

· Grant and revoke statements are not permitted in multi-database connections. If permissions are to be changed this must be done in a single-database connection.

· Renaming of database objects (ALTER .. TO .. as described in section 5.3) is not permitted in multidatabase connections. If an object is to be renamed this should be done in a single-database connection. When objects are renamed, the change is automatically made to all references to the object within the database, but the change is not transmitted outside the database.

· Dropping an object is not permitted for multi-database connections. If an object is to be dropped this must be done in a single-database transaction. Objects in other database are not checked for dependency. Any dependent object either causes the drop to fail (RESTRICT) or is dropped in turn (CASCADE).

· Values of user-defined types can only be stored in the database that defines the type. For best results the supertype if any should also be defined in the same database, since as above Pyrrho does not transmit changes in the supertype to other databases.

It is relatively unusual for a single transaction in a multi-database connection to result in changes in more than one database. The occurrence of such a transaction makes a permanent link between the databases since the transaction cannot be verified unless all the participating databases are online. Pyrrho verifies such transactions for consistency each time any of the participating databases is loaded, so that all participating databases must be known to the server (they may of course be remote). A database can be made known to the server through use of the configuration files (Enterprise, Datacenter editions), or using an Open() with a connection string that refers to all of the databases.

2.9 Datacenter configuration

The Datacenter edition of Pyrrho uses a unique design, in which the notion of transaction remains paramount. 

During the commit phase of a transaction, there is a point after all processing has taken place, where the committing service thread must obtain an exclusive lock on the database writer thread, even if it is on another server. During this time, which is normally of very short duration, the committing service checks for transaction serialisation, before sending the data to the writing thread. 
The committing transaction is up to this point isolated from any database changes that have committed since its start time. It processes these changes to ensure they do not conflict with its intended changes. If all is well, the transaction commit proceeds. Then the lock is relinquished.

Thus described the mechanism appears to have large granularity, since the whole database file is locked against writing. However Pyrrho writes very little to the disk (less than 2% of the amount needed for alternative products), and the notion of conflict is quite fine grained, even applying at the field level for the admittedly unusual circumstance where two transactions have updates to different, non-key, fields of the same record: in this case these will not conflict if neither transaction has directly or indirectly read the field the other is updating. During transaction processing, data structures are set up to minimise the length of time taken in the commit phase. 

All servers in the datacenter cluster can read the database files but for each database at most one server can commit changes to the database file directly. On that server, any local service thread can wait for and obtain a write lock on the database file. In addition, that server will have a commit service thread for remote servers to wait for and obtain a similar write lock.

In high-volume scenarios, it can be beneficial to share out the write access among different servers, so that each database with a high transaction volume has a dedicated writer. The practical limit to speed arises from the requirement that all servers that provide access to a database must keep up to date with committed transactions on that database. Ultimately the number of changes per second to a single database exhausts the capacity of servers to keep their data structures up to date, and database partitioning should be considered.

Database partitioning can be achieved by separating tables into different databases; by splitting large tables horizontally (by separating the rows into different tables and placing these tables in different database) or vertically (by placing different columns in different databases). Then a application can connect to the partitions it requires using the techniques of the last section. The actual benefit achieved, depends on the database design and usage profile, and a full analysis of the options is beyond the scope of this booklet. It should be clear however that the database design should avoid partition reassembly in high-volume business processes.

3. Installing and starting the server

The server PyrrhoSvr.exe is normally placed in the folder that will also contain the database files. The free, pro, and Open Source editions of PyrrhoSvr can be started from the command line, by the user who owns this folder. It is a good idea to run the server in a command window, because occasionally this window is used for diagnostic output.

[image: image3.png]&5 Command Prompt - PyrrhoSvr -[o]

£ \nkc\Pyrrho\Net2 . 0>PyrrhoSur
yrrho DEMS <o) 2806 Malcoln Crove and University of Paisley
4 (4 January 20065 www.pyrrhodb._con

database files limited to SMB

0T Mininising Disk Reads
ttp service started on port 8080





Windows will probably announce that it is blocking this program as a precaution. You will need to click the “Unblock” button on this security dialogue if you want to use the server. However, you should configure your firewall to make this service local to your subnet or local machine.  The following dialogue box is from Windows XP:

[image: image4.jpg]Change Scope

T speciy the set af computers for which this pot o program i unblocked, cick an
oplion below

To speciy 3 custom s, ype st ofIP addfesses, subnets, o1 both separated by

O iy computer (including those on the Interet)

Ok B

O Lustomfst:

Example: 192.168.114.201,132.168.114.201/255 255 255.0





See detailed instructions for Windows Firewall at http://www.pyrrhodb.com/firewall.htm .

Under Linux, the command is mono PyrrhoSvr.exe . For the enterprise and datacenter editions of Pyrrho, see sections 10 and 11.

3.1 Command line options

The command line syntax for the free and pro editions of Pyrrho is as follows:
PyrrhoSvr [–m ] [–p:port] [-h:port] 

If the –m flag is given, then main memory is used to cache the entire file of every database accessed. This option is mentioned in the discussion of performance in Chapter 1. If memory is expected to be tight, then do not use this option: there is some effect on performance, but Pyrrho will still generally outperform commercial products.

The –p argument is used to set the TCP port number to something other than the default 5433. This can be a useful and simple security precaution. See section 3.4.

The –h argument is used to set the HTTP port number to something other than the default 8080. 

You can check the server is running by using your Web browser:

http://localhost:8080/

[image: image5.png]2 Pyrrho DBMS - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © B B @ P Frroens @

ddress ] tpfposahost0s0/

‘Welcome to the Pyrrho DBMS

Connection: |
Query:
Output:| Himl | [ Submit Query

‘The databases available on this server are here
To connect to (or create?) a database, inchude Files=databasename in the Connection string,
yrrho DBMS (c) 2005 Malcolm Crowe and University of Paisley

Free version: database fles limited to 8MB
0.1 ALPHA (21 August 2005) httpi/cis paisley. ac ul/crow-ci0

CreT




See section 3.6 for more details of this service. 
3.2 Server account

PyrrhoSvr.exe, the folder that contains it, and all the database files in this folder are normally owned by the same user, called the server account in the following notes. Note that the “database owner” is different – as described in this section.

In enterprise contexts it is good practice under Linux for the server account to be a server identity such as S_PYRRHO , ie. a user identity created on the system but who cannot login, and whose only privileges are to be able to create, delete, read and write files in the server folder, and provide a TCP service on the Pyrrho port (default 5433). Things should be set up so that PyrrhoSvr.exe runs under this account, and no other account should have access to the server folder. In the enterprise version of PyrrhoSvr on Windows the server runs as a local service, and is normally started up with the operating system.

The server operates its own security policies (controlled in the usual SQL way by GRANT and REVOKE) on who is allowed to create and access database files. On Windows the client utilities use the Windows.Security package to identify the client user ID (Windows login name), and construct an encrypted connection string to pass this to the server. 

If the server creates a database (file) on behalf of a client, the client user’s name will be recorded in the very first record of the file: this user is then established as the database owner, and by default has full administrative control over the database. See Chapter 5.

3.3 Database folder

On the Open Source edition of Pyrrho, database files have extension .osp. For other editions the extension is .pfl. For example, a database called Sales will be contained in a file Sales.pfl or Sales.osp. If a database file grows beyond 32GB it will be split into sections: after the first one their names will be Sales.1.pfl, or Sales.1.osp, etc. (As is suggested by the different extensions, Open Source Pyrrho files cannot be used by other editions and vice versa, for the reasons explained in section 2.2.6.)

You can inspect the database folder from time to time to check everything is in order. By default in Personal, Professional and Open Source editions, and optionally in the other editions, a list of available databases can be obtained from the utility program PyrrhoMgr or the web interface, and this list should correspond to the files in the database folder. Server configuration settings determine whether the list of databases can be accessed in this way, and whether users are permitted to create new databases.

In the enterprise and datacenter editions of Pyrrho, database names in Pyrrho can be paths, so that databases to be placed in other folders. For example, users can create databases in their home folders with a personal edition of Pyrrho, and later allow the enterprise server to connect to these databases without having to copy the database in the enterprise server’s folder.  Thus similarly named files will not be confused by the server provided they have different paths.

It is not a good idea to rename a database file unless no-one is using the default authority (authorities are discussed in section 5.5). 

3.4 Security considerations

Pyrrho is a TCP server, and the Internet is generally not a secure place. The Pyrrho DBMS server should be configured behind a firewall, and accessed from within the firewall by web servers and possibly local users. This precaution guards against denial-of-service and other attacks attacks. Further instructions for doing this are given at the very start of this chapter.

Within such a firewall, the use of Pyrrho as described in this booklet conforms to the levels of security provided with the Personal and Professional editions of Pyrrho. The other editions are dealt with in chapters 10-12. 

The following issues deserve consideration, and are supported in the indicated editions of Pyrrho.

1. The security of the database file itself. In all versions of Pyrrho, the DBMS validates the database file by means of fields at the start and end of the file: the end-of-file marker contains a hash of the database content, and helps to ensure that only the server can modify a database. 

Naturally, access to the database folder should be limited to the server and operations staff, and strong password policies should be in place. Tools are provided with the enterprise and datacenter edition for making a backup copy of the database file in the presence of such measures: otherwise normal file copying utilities can be used.

To protect against loss, copies of this file should be taken periodically and placed in a secure location. It is good practice to compare successive copies of the database: the database should always match the backup copy up as far as the end-of-file marker, and a utility is provided in the enterprise and datacenter editions to verify this. These features facilitate the creation of very secure systems.

2. The security of communication with the server. For all editions of Pyrrho, the connection string is encrypted using a custom encryption technique. In a secure environment, only administrators need to use the client utilities described in this booklet, and all other users would use secured applications with the correct port numbers concealed. In a secure environment access to the ports would be limited to authorised users, and the port numbers could be changed periodically. 

3. The security of user identity for each transaction. For all editions of Pyrrho, the client library obtains the user identity from the operating system and places it in the connection string for secure transmission to the server. Web applications should be configured so that the remote user’s identity is correctly passed through (anonymous access should be discouraged).

4. The security of the authority name for each transaction. This can be placed in the connection string by the application, and then the client library merely passes this through. In secure environments the authority name can be verified against the recorded usage of authorised software.

See also section 5.1 on the question of permissions for users to create new databases (enterprise and datacenter editions). (This is not really a question of database security.)

3.5 Forensic investigation of a database

Pyrrho supports two kinds of investigation of a database. 

First, full log tables are maintained. These are publicly available in the personal edition, and always accessible to the current owner of the database. The Enterprise and Datacenter editions have a startup parameter called Investigator, and the Investigator if configured can access log files. The log files allow tracing back to discover the full history of any object: when it was created, what changes to it were made, and when it was dropped. In each case, full transaction details are recorded: user, authority and timestamp. Since objects can be renamed, logs use numeric identifiers to refer to objects in the database. Full details of the log tables are given in chapter 8. Using these tables it is always possible to obtain details of when and by whom entries were made in the database, and the www.pyrrhodb.net website provides easy to use facilities to conduct this sort of investigation.

Secondly, Pyrrho supports a sort of time travel, in which a Stop time is specified in the connection string. The connection then shows the database exactly as it was at that time. This method has both advantages and disadvantages. The advantages are that the applications for the database (that were used at the time in question) can be used to inspect the database, which is generally easier than working with the log files. The disadvantages are that the database permissions may have changed in the interim: the user identities that were used at the time in question may also need to be reconstructed. For details, see the section on the Connection string in chapter 6.

One extension to Sql2003 syntax which assists with forensic investigation is the pseudo-table rows(n) where n is the Pos attribute of the table concerned in “Sys$Table”. For example, suppose we want a complete history of all insert, update and delete operations on table Fred. Then lookup Fred in Sys$Table:

select "Pos" from "Sys$Table" where "Name"='Fred'
If this yields 567, then the required history is

select * from rows(567)

These can of course be combined:

select * from rows(select "Pos" from "Sys$Table" where "Name"='Fred')

[image: image6.png]



Semi-readable versions of these log entries can be obtained from Log$: 

select a."Pos","Desc" from "Log$" a inner join rows(select "Pos" from "Sys$Table" where "Name"='Fred') b on a."Pos"=b."Pos"
[image: image7.png]Command Prompt - pyrrhocmd book [-[5]

inner join rousCselect "Pos” from "Sys$

BOOK’> b

315 C[326] 10>C[3651 1>C[434] Nicholas Nicklehy)

for 315 ([326] 11)C[365] 1)C[434] Dombey & Son>

for 315 ([326] 13C[3651 2)C[434] Nostromo)

for 315 ([326] 14)C[3651 1)C[434] A Tale of Tuo Cities

For 315 ([326] 15)<[3651 2)C[434] Lord Jim>

of 539 <539) Record For 315 ([4341 Dombey and Son>

For 315 ([326] 16)C[3651 2)C[434] Heart of Darkness)

for 315 <3261 179¢13651 1C[434) Mantin Chuzelonit>
315 <[326] 18>C[3651 35><[434] Nodd land>





The system log refers to columns and tables by their uniquely identifying number rather than by name. Note also that the Update record shows which field(s) have been modified.

There is a pseudo-column in every table called POSITION which allows the defining position of current records in the database to be retrieved using ordinary queries, e.g. in the above example

select position from book where title='Dombey and Son'
would give 539. This value can then be used to find relevant log entries.

The techniques described in the next section can be used in conjunction with Log files to construct powerful reports and templates for investigating aspects of a database. See http://www.pyrrhodb.com/reports.htm .

3.6 Pyrrho as a Web server

By default Pyrrho will also try to set up a HTTP service on port 8080. Without further configuration this web interface can be used for a variety of purposes including SPARQL (see section 3.6.6 below).

Single sql statements can be sent using a URL such as:

http://hostname:port/Connection=connectionstring&Query=sqlstatement
For example 

http://localhost:8080/Connection=Files=Temp&Query=table%20%22Sys$Database%22

http://localhost:8080/Connection=Files=Temp;User=HOME\Malcolm&Query=create table a(a1 int)

However, as a result of non-localisation of the server (section 3.8), error messages are displayed by SQLSTATE number only. These can be deciphered with reference to section 5.6.7, or by using XSLT, which is described in section 3.6.3.

Pyrrho is able to perform XSL transformations on the output as described below but does not support other server-side processing such as active server pages. Its parameters can however be supplied from a URL: see section 3.6.4.

See section 3.6.5 for techniques for retrieving a current value that works even where the database objects have been renamed.

3.6.1 Special characters in URLs

When encoding URLs of this sort, embedded special characters in the strings can be replaced for some browsers as follows:

	Character

	Code


	Space

	%20


	Double quote

	%22


	Hash

	%23


	Dollar sign

	%24


	Percent sign

	%25


	Ampersand

	%26


	Comma

	%2C


	Semicolon

	%3B


	Less than

	%3C


	Equal sign

	%3D


	Greater than

	%3E


	Question mark

	%3F



	
	[image: image8.png]2 Pyrrho DBMS - Microsoft Internet Explorer
Fle Edt Vew Favortes Took Heh

Qoak - O - B B & Psewch Frravortes @3- % B - D@ B

ddress | ] hit:flacaihost:8080/ Connection=Flles=TempQuery=table:20%225ysfDatabasews22 | [EJ 6o

table "Sys§Database"
Name

Copy of Roll
newDB

Roll

Roll0

Squash

Temp

Pyrrho DBMS (c) 2005 Malcolm Crowe and University of Paisley
0.2 (7 December 2005) www.pyrrhodb.org

CreT







The replacement for ampersand should only be used within values or strings where & is desired, not between values, as in the above examples: The connection string and sql statement can also be sent as posted data. A sample form to do this is provided in the distribution as form.html.

3.6.2 XML output

An additional field can be set: &Output=xml is supported by the server. If the Output parameter is supplied, the results are supplied direct to the client without the HTML wrapper shown in the above illustration:

[image: image9.png]3 http://localhost: BOBO/ - Microsoft Internet Expl.

Ele Edt View Favortes Toos Help

Q- ©- X B & Pt

<7l version="1.0" encading="UTF-g" 7>
- <root>
- <row>
<ID>1</ID>
<VAL>Fred</VAL>
</rows
- <row>
<ID>2</ID>
<vAL>Joe</VAL>
</rows
</root>

CreT




However, note that the user of the web service interface is treated as guest in most editions of Pyrrho. Only the free edition accepts the User= section of the connection string by default. The User information should match the Windows login id. The enterprise edition can be configured to trust Http user identities (section 10.2) and this may be acceptable on a firewall-protected intranet port.

3.6.3 Using XSL transforms

The above mechanisms can be used to provide readable web-based reports from Pyrrho when used in combination with XSL transforms. If the Output parameter references an XSL file, i.e. has form &Output=something.xsl, then not only is the output produced in xml, but it is also transformed using the given transformation file.

It is very useful to have the XSL transform encode its output into HTML. As is usual in such arrangements, the output of the transform should be a complete web page including html, head and body tags.

The Output parameter can be specified as part of a URL-specified parameter, see section 3.6.4.

3.6.4 Web-formatted reports

The parameter Url can be used to supply the Query and Output parts of the above data from the web, as follows.

The value of the Url parameter if supplied is the URL of a text file containing a sequence of lines of the following forms:


Textfile


Stylesheet<Query


Param:=Query

The URL can also be a CGI or aspx page that supplies such a text file. If the output string appears to be a filename it is converted to a URL relative to the Url parameter. The results of all such lines are concatenated into a single report. 

Script lines of form Textfile refer to files from the same web site, which are to be copied into the output. The first line in the report generally is a textfile that supplies a HTML header and the last one the corresponding HTML footer.
For example, suppose that http://myserver.com/abc.txt contains the single line

directors.xsl<select fullname from directors where country=’France’

(Note: for stylesheet processing it is important to alias selectors of form a.b to a name that does not contain a dot.)

Then the stylesheet http://myserver.com/directors.xsl can be used to format the query from the Movies database on localhost by requesting

http://localhost:8080/Files=Movies&Url=http://myserver.com/abc.txt
There are some general-purpose reports available on the pyrrhodb.net website: http://www.pyrrhodb.net/reports.htm , e.g

http://localhost:8080/Files=Movies&Url=http://www.pyrrhodb.net/reports/tables.txt

To deal with the case of the Url having parameters, Pyrrho assumes that Url is the last parameter it processes, so that parameters (name=value sequences of form &a=b) following the Url keyword can be provided in the Url following a question mark.

Such names can be referred to in the script (or textfiles) by enclosing them by %s e.g. %name% (if you want a % in the script, you can double it %%). Additional parameters can be given values in the script by a line of form Param := Query. 

3.6.5 IRI interface: current Values

Any value retrieved from a database has an associated IRI (see section 8.4.3) of form http://host:8080/dbname/rrrr/cccc , which can be used at any subsequent time to retrieve the current value. The value can be returned in HTML or XML form.

If the value is now null or the record has been deleted, or if either the column or the table has been dropped, the returned xml will be

<cell/>

Otherwise the server will return the value of the column with defining position ccc in the latest version of the record with defining position rrr:

<cell table=”tablename” column=”columnname” type=”type”>

Some data

</cell>

The table, column, and domain names will be the current ones, and the type is the type of the value, which might be a subtype of the domain, or one of the keywords array, multiset, row, or table. Cells of type XML will naturally contain XML. If the column contains a row type or user-defined type, the names of its fields will be used as subelements, which will also contain type information. Cells that are arrays and multisets will contain items, whose type information is also provided, so for example we might get

<cell table=”Shapes” column=”Draw” type=”array”>

<item type=”Line” ><color type=”char”>Black</color> <X0 type=”real”>45.2</X0> <Y0 type=”real”>15.1</Y0> <X1 type=”real”>45.2</X1><Y1 type=”real”>22.71</Y1>

</item>

</cell>

Cells that are tables will similarly contain rows, but the row element does not contain a type attribute. As can be seen from the above examples the XML prelude <? Xml … ?> is omitted.

3.6.6 SPARQL

For the SPARQL interface, the word sparql/ can be included in the URL, as follows:

http://localhost:8080/Temp/sparql/

http://localhost:8080/sparql/?query=something
The query part can be supplied as posted data. If it is missing or empty, Pyrrho responds with a SPARQL e-form. In the first example here, the default RDF dataset will be found in the database Temp. In the second example, the dataset must be specified explicitly in the query.

The query should conform to the W3C SPARQL standard, or begin with @prefix specification and consist simply of triples to be entered in the database, using the Turtle-style format used in the standard.

For further information about SPARQL, see section 5.10 and  www.w3.org .
3.6.7 Http service Reference

Where the URL consists of the Pyrrho server and port identification and a query only, Pyrrho supports the following actions supplied using GET or POST:

	Name
	Value
	Comments

	Connection
	e.g. “Files=something”
	The connection string for an SQL command or Web report

	Output
	“html” “xml” or “something.xsl”
	How to format the output

	Url
	e.g. http://myserver.com/abc.txt
	URL of a Web report specification

	Query
	A SQL statement
	Connection string is required


3.6.8 The PyrrhoDb Protocol

The Pyyrrho DBMS server is implemented as a TCP/IP server, and the IRI for this service is 

pyrrhodb://hostname[:port]/files/[sparql][?query]
The IANA-registered pot for this service is 5433, which is used if no port is specified. See section 6.13. 

However, it can be noted here that the Pyrrho API includes PyrrhoGet and PyrrhoPost functions that provide access to the facilities equivalent to those described in this section, including SPARQL. The following parameters can be url-encoded in the query part:

	Name
	Value
	Comments

	Output
	“html” “xml” or “something.xsl”
	How to format the output

	Url
	e.g. http://myserver.com/abc.txt
	URL of a Web report specification

	Query
	A SQL or SPARQL statement
	SPARQL is used if the IRI contains sparql


If the URL contains /sparql the Query should be a SPARQL statement (see section 3.6.6). The default output format is xml, as specified in the SPARQL standards.

3.7 Character Sets and Collations
Pyrrho uses the character set names as specified in SQL2003. Specifying a character set restricts the values that can be used, not the format of those values. By default, the UCS character set is used.

By default, the UNICODE collation is used, and all collation names supported by the .NET framework are supported by Pyrrho. CHAR uses standard culture-independent Unicode, NCHAR uses the default culture information from the server (deprecated). UCS_BINARY is supported.

3.8 Localisation

The SQL2003 standard specifies a locale-neutral interface language to the server. Pyrrho maintains this, with locale-neutral database files. Localisation is a matter for client configuration and is dealt with in chapter 4.

3.9 Pyrrho DBMS architecture

The structure of the Pyrrho DBMS is shown in the drawing below


[image: image10.emf]Database File (.pfl)

Database File Segments (.n.pfl)

Physical records (Log$)

Logical Database

SQL processor

Applications OS tools Enterprise tools Client tools

File segments are used for databases larger than 4GB.

Enterprise tools provide facilities for secure backup and mobile checkpoints


4. Pyrrho client utilities

There are three standard utilities at present, PyrrhoCmd, a command line processor that uses a console interface, PyrrhoMgr, a WinForms application that uses a tree-view browser and DataGrid display, and Rdf, which provides a SPARQL interface. As with all Pyrrho clients, the PyrrhoLink.dll or OSPLink.dll assembly is also required. We discuss these first. 

4.1 The Pyrrho Connection library

OSPLink.dll (or the Java package org.pyrrhodb.*) is used by any application that wishes to use the Open Source Pyrrho DBMS, and PyrrhoLink.dll is needed by any application that wishes to use other editions of the Pyrrho DBMS. These client libraries have similar functionality, but they differ as described in section 2.2.6.

This includes the supplied client applications. The simplest possible approach is simply to place PyrrhoLink.dll (or OSPLink.dll) in the same folder as the application that is using it. If you are happy with this approach you can skip to section 4.2.

In Chapter 6 we will see that PyrrhoLink.dll (or OSPLink.dll) is also needed to be at hand when compiling applications.

4.1.1 Installing the client library in the Cache

On Windows, if you have administration rights, you can use the .NET utility function gacutil.exe to install PyrrhoLink.dll or OSPLink.dll in the global assembly cache. This makes the client library accessible to any application.

Open a command window in the same folder as PyrrhoLink.dll and give the command:

gacutil –i PyrrhoLink.dll

You can see what is in the cache if you use you file manager to look at c:\Windows\assembly . Similar commands are used for OPSLInk.dll.

4.1.2 Localisation

By default PyrrhoLink and OSPLink supply error messages in English. If preferred, PyrrhoLink’s error messages can be localised into the client machine’s local language (if available). For example, if your client machine is localised for Chinese, it is a good idea to obtain the Chinese Pyrrho resource file from the web site, and place it in the global assembly cache:



gacutil –i PyrrhoLink.resources.dll

Several different localised versions can actually be installed in the global assembly cache (they will not conflict).

Alternatively, the resources dll should be placed in a subfolder which the same name as the locale (e.g. en-GB, en, zh-CHS, etc). 

Locale-independent data from the database, such as dates and times, are rendered by PyrrhoLink.dll according to the regional settings on the client machine. The database may be in a different country or timezone from the client. 

However, SQL2003 itself is invariant. Thus the following behaviour is correct for a client machine in the UK:

[image: image11.png][l Shortcut to PyrrhoCmd.exe HER|
B

SaL> insert into aca2> values(date *2084-10-31">





4.2 Installing the client utilities

The distribution currently contains PyrrhoCmd.exe and PyrrhoMgr.exe, and the PyrrhoLink module PyrrhoLink.dll (or OSPLink.dll for the Open Source edition). These can be placed anywhere in the file system so long as the dll is in the same folder as the executable. On Windows systems, the utilities can be conveniently installed in C:\Program Files\Pyrrho\Client . 

Since the client executables are so small (currently 80KB including the DLL) it is generally easier to copy them where they are required rather than using load-paths or registry entries. 

It is usually convenient for database administration to install them on the server (in addition to client machines if any), but the client utilities do not have to be on the server machine. If the server is not on “localhost” the –h: command line option can be used to specify a different host (e.g. –h:fred , or  ‑h:192.168.1.3 ).

4.3 PyrrhoCmd

PyrrhoCmd is a console application for simple interaction with the Pyrrho server. Basically it allows SQL statements to be issued at the command prompt and displays the results of SELECT statements in a simple form.

It has some additional features. It supports upload and download of blobs (binary large objects) through use of the escape character ~. It also supports the sort of multi-database connection described in section 2.7. See section 4.5 for locale issues.
4.3.1 Checking it works

On the same machine as the server, open a command window and use cd to navigate to the same folder as the client executable.

PyrrhoCmd
SQL> table "Sys$Database"

In SQL2003 table id is the same as select * from id for base tables and system tables.
[image: image12.png][C:\Docunents and Settings\Malcolpy|

[C:\Pyrrho>PyrrhoCnd
SaL>" table “Sys$Database”





PyrrhoCmd will respond with the list of databases in the server folder. The database Temp is created if necessary by the above dialogue. You can confirm this by looking in the folder: you will see a file called Temp.pfl or Temp.osp (it was not there before).

You can use control-C, or close the window, to exit from PyrrhoCmd. 
By default PyrrhoCmd opens or creates a database called Temp. To create or use another database, specify it on the command line.

4.3.2 Accessing a remote server

If the client is running on a different machine from the server, you will need to specify the host in the command line, as in:

PyrrhoCmd –h:fred
Normally, PyrrhoCmd is used to connect to a particular database, specified as an argument in the command line. If no argument is supplied, then as indicated above, the Temp database is used. 

4.3.3 Connecting to databases on the server

For example, if there is a database called Book, use

PyrrhoCmd Book

to connect to it. Note that case is significant in database names (since these are parts of actual file names). If more than one database name is given on the command line, a connection is established that opens a list of databases in the order given. See section 2.7.

4.3.4 The SQL> prompt

PyrrhoCmd is normally used interactively. At the SQL> prompt you can give a single SQL statement. There is no need to add a semicolon at the end. There is no maximum line length either, so if the command wraps around in PyrrhoCmd’s window this is okay.

SQL> set authority ranking
Be careful not to use the return key in the middle of an SQL statement as the end of line is interpreted by PyrrhoCmd as EOF for the SQL statement. If you want to use multiline SQL statements, see section 4.3.5.

At the SQL command prompt, instead of giving an SQL statement, you can specify a command file using @filename. Command files are ordinary text files containing an SQL statement on each line.

4.3.5 Multiline SQL statements

If wraparound annoys you, then you can enclose multi-line SQL statements in [ ] . [ and ] must then enclose the input, i.e. be the first and last non-blank characters in the input.

SQL> [ create table directors ( id int primary key, 
> surname char, 
> firstname char, pic blob ) ]
Note that continuation lines are prompted for with > . It is okay to enclose a one-line statement in [ ] . 

Note that Pyrrho creates variable length data fields if the length information is missing, as here. This seems strange at first: a field defined as CHAR is actually a string.
4.3.6 Adding data and blobs to a table

For PyrrhoCmd this is done by

SQL> [ insert into directors (id, surname, firstname) values (1, 'Spielberg', 'Steven', ~spielberg.gif) ]
The above example shows how PyrrhoCmd allows the syntax ~source as an alternative to the SQL2003 a binary large object syntax X'474946…' . PyrrhoCmd searches for the file in the current folder, and embeds the data into the SQL statement before the statement is sent to the server.

As this behaviour may not be what users expect, the first time Pyrrho uploads or downloads a blob, a message is written to the console, e.g.:

Note: the contents of source is being copied as a blob to the server

source can be enclosed in single or double quotes, and may be a URL, i.e. ~source can be ~"http://something".
4.3.7 Retrieving data and blobs from the server

Data is retrieved from the database using TABLE or SELECT statements, as indicated in 4.2.1. 

If data returned from the server includes blobs, by default these are downloaded into files with new names of form Blobnn . Again PyrrhoCmd will alert the user to this process on the first occasion (unless –s flag has been set, see section 4.3.8, or the above message has been shown). To prevent downloads, use the –b flag, see section 4.3.8.

[image: image13.png]



Blobs retrieved by this method end up in PyrrhoCmd’s working directory. To view them it is usually necessary to change the file extension, e.g. to Blob1.gif.

For ways to retrieve data and blobs using an application, see Chapter 6.
4.3.8 Command Line synopsis

When starting up PyrrhoCmd, the following command line arguments are supported:

	database ...
	One or more database names on the server. The default is Temp. See section 2.7.

	-h:hostname
	Contact a server on another machine. The default is localhost

	-p:nnnn
	Contact the server listening on this port number. The default is 8733

	-s
	Silent: suppress warnings about uploads and downloads

	-e:command
	Use the given command instead of taking console input. (Then the SQL> prompt is not used.)

	-f:file
	Take SQL statements from the given file instead of from the console.

	-c:locale
	Specify a language for the user interface, overriding .NET defaults. Localised versions of the error messages will be used if available. See section 4.1.2.

	-b
	No downloads of Blobs

	-?
	Show this information and exit.


Whether the command prompt (console) window is able to display the localised output will depend on system installation details that are outside Pyrrho’s control. Localisation is more effective with Windows Forms or Web Forms applications. The Windows Form utility PyrrhoMgr is described next.
4.4 PyrrhoMgr 

PyrrhoMgr is a WinForms application that allows easy browsing of single databases on a Pyrrho server. It also supports import of database objects using ADO.NET. 

4.4.1 Checking PyrrhoMgr works

On the same machine as the server, either double-click on PyrrhoMgr.exe or start it from a command prompt:

[image: image14.png]



Double-click on the localhost entry to obtain a list of databases (PyrrhoMgr does not create Temp by default, so the list of databases may be empty).

[image: image15.png]



You can close the PyrrhoMgr by closing the window.

4.4.2 Connecting to a database on the local server

You can connect to a database by double-clicking on the row in the list of databases:

[image: image16.png]=3 losakhost
8 Tem

9 Tabes

Domains

B s
B autortes
& Log

R
e





There is not much more to see if the Temp database has only just been created. See Chapter 5.

To access the Pyrrho server on another host use

PyrrhoMgr –h:host
There is currently no way to use PyrrhoMgr to connect to a group of databases in the manner described in section 2.7.
4.4.3 Using PyrrhoMgr

Many of the facilities in PyrrhoMgr relate to browsing system tables and logs, which are covered in chapter 8. The user interface is easy to explore: double-clicking on an icon in the treeview fills the data grid with the associated data, and generally double-clicking a row in the datagrid opens a sub-object in the treeview.

If the datagrid is showing the contents of a table, it is usually possible to add, edit, or delete rows, in the standard datagrid way.

Note, however, that there is a textbox in the lower right, into which can be typed or copied an SQL statement. This gets placed into the treeview, and double-clicking causes it to be executed. If it is a select, the returned data will be displayed in the datagrid.

The permissions granted to the client user will determine how much of the following data is visible or editable.

4.4.4 Databases

As shown above, there is normally just one host shown as the root of the treeview. Double-clicking on it loads a list of databases into the datagrid.

Double-clicking the name of a database creates child nodes in the treeview for examining objects in the database, and shows details about the connection in the datagrid. If the client is the database owner the icon for accessing the log will also be visible.

The connection details include the user name and the authority. The user name will be the name of the logged-in account that is using PyrrhoMgr. The authority can be changed as in section 4.3.6.

4.4.5 Tables

Double-clicking this icon fills the datagrid with meta data about user tables in the database. Double-clicking a row in this table creates a child node for examining the table concerned.

Double-clicking a table icon fills the datagrid with the contents of the table, and creates child nodes for the columns and indexes of the table, and, in the case of the database owner, the associated logs.

Double-clicking these subobjects brings up their properties, for example the number of distinct values of a column.

4.4.6 Other objects

Double-clicking these generally shows the properties of these objects found in the system tables. Only a few of these datagrids are editable.

The Authorities icon, when double-clicked, shows in the datagrid the list of authorities for the database. Double-clicking on one of these sets the authority for the connection to the database (as can be verified by double-clicking on the database icon). Making changes using PyrrhoMgr is not encouraged, and maybe PyrrhoMgr should not have this particular feature. (See section 3.4)

4.4.7 Importing data from other databases

PyrrhoMgr supports importing data from other databases. This is currently easiest with Microsoft Access databases. Double-click on a database icon, and one of the child icons is “Import..” .

Double-click on Import.. to select a database to import from with a standard file open dialogue.. The default file type here is Access. You can cancel this dialogue if the database you are importing from is not file based.

The next dialogue is to specify the actual import:

[image: image17.png]Import Data
Comneclion Sting

[Jot OLEDB: Global Partial Bulk Ops=2:let DLEDE: Registy Patheilet
(OLEDB Daisbase Locking Mods=1.1et DLEDB:Database Passwor

et DLEDB Engine Type=5Jet DLEDB Global Bulk

et OLEDB System
Jse Etended Propertis= Mode=Share Deny

None;Jet OLEDE:New Database Password=iJet OLEDE Creats System
Datsbase=False;let DLEDB:Dort Copy Locale on Compact=Faseilet
[OLEDB Commpact Without Replica Fiepair= alse:User [D=drinyet OLEDB:Encrypt
Database-Faise

The stating valie here i for Access databasss. For other databases see
connection stina information fiom wiw,carmectianstinas.com

Source Query

select ™ from

Dest Table Name I Create Table
T impotRecads

o





If a file was selected, its pathname will replace the ? in the connection string. As the dialog explains, the connection string supplied works for Microsoft Access databases, and otherwise should be replaced with whatever is appropriate. If you have Visual Studio available, there is a wizard for construction of connection strings. Otherwise there are internet sources that help. For Pyrrho’s own connection string, see Chapter 6.

Fill in the source query, destination table name and check boxes in this dialogue as required. When you click OK, a single table will be created and/or its records imported. With the create table option, PyrrhoMgr will create a table with the required columns. If an existing table is being used as a destination, correspondingly named columns must match.

Note that table and column names are not capitalised in this process. If the existing column names are not simple uppercase identifiers, and the “create table” box is checked, the resulting Pyrrho column names will need double-quotes around them unless they are subsequently renamed. 

4.4.8 Localisation of PyrrhoMgr

There are additional resource files on the web site for displaying the user interface of the PyrrhoMgr utility in languages other than English. In Windows these can be placed in the global assembly cache, or in a subfolder with the same name as the locale, as in section 4.1.2.

4.4.9 Command line synopsis

When starting up PyrrhoMgr, the following command line arguments are supported:

	database ...
	One or more database names on the server. The default is Temp. See section 2.7.

	-h:hostname
	Contact a server on another machine. The default is localhost

	-p:nnnn
	Contact the server listening on this port number. The default is 8733

	-c:locale
	Specify a language for the user interface, overriding .NET defaults. Localised versions of the application and error messages will be used if available. See section 4.4..8

	-?
	Show this information and exit.


4.5 Rdf and SPARQL

This client utility is a Windows Forms client which is convenient for exploring and managing the Rdf content of a Pyrrho database. It is not available with the .NET Compact Framework. Rdf content can be entered as explicit triples (see 4.5.2 below), and the relational objects in the database also provides implied Rdf content (see section 5.10.2). SPARQL queries access the merger of both kinds of data.

[image: image18.png]|R:sPARQL

Hast [locakhost Database [Temp Port
FREFIX o <hip:/mwm w3 org/1993/02/ 22 dh-syrtarst>

FREFIX de:  <hitp //pur g/l /elements/1 15

FREFIX:  <hitp://esample/nst

SELECT %book 7tle
WHERE
{2rdsubject_ 7book
A predicate_deiile
rdkobject 7l
saddy  "Bob’

book ile
“SPARML Tuto

5433 | G





The application window includes connection details along the top, a textbox for entering data or queries, and datagrid for displaying results. In the illustration, the Sparql button has just been used to retrieve the results of the query shown in the textbox.

This application is merely a convenient interface to the Rdf facility supplied natively in the Pyrrho DBMS, as the following notes indicate. This makes it very easy to build applications that use the Pyrrho API to access and manage Rdf data.

4.5.1 The database connection

At the top of the application window are textboxes allowing to specify the host, post and database name(s):

The connection data specified in these three boxes is used to establish a a Pyrrho database connection each time a button is clicked. The Hostname can be given in DNS or IP form. For advanced use a comma-separated set of database names can be provided.

The database specified in the connection is used as a default Rdf dataset. Other datasets can be specified in the FROM part of a SPARQL query, using their Iri references: other Pyrrho databases can be specified in this way also (see 5.10.4). Note that the IRI should contain the path component sparql/ in this case.

The fourth box labelled “Graph” is discussed in the next section.

4.5.2 Explicit Triples

Explicit triples may be stored in the specified database by entering them in the text box and using the Save button (it can also be stored using the SPARQL construct statement). 

The data explicitly stored in the database can be viewed using the Show button. For convenience the data is dereferenced to show triples (rather than using the actual Rdf$ table, described in 5.10.3), and the resulting triples are displayed in the datagrid window.

Explicit triples can be removed from the database using the retract button. 
To save or retract data in a particular graph in the named database, enter the name of the graph in the Graph textbox at top right of the application window. The checkbox alongside indicates whether the selected action applies to the graph named in the textbox. By default, the unnamed graph is used.

The Save and Retract button simply invokes an Rdf save or retract operation on the database. For example, if ggg denotes the contents of the Graph box (if enabled) and ttt the contents of the textbox, the Retract button will send the command rdf retract <ggg> ( construct { ttt } ) .
4.5.3 The SPARQL interface
The textbox can be used with the Sparql button to send SPARQL queries (as illustrated) to the specified database, and the results of such a query (a table of variable assignments) are displayed in the data grid view window.

If ttt denotes the contents of the textbox, the Sparql button simply invokes  rdf ( ttt ) on the database.

4.5.4 Publishing Rdf data

The Publish button can be used to allow guest users to read the RDF information stored in the named database. 

It simply invokes grant select on "Rdf$" to guest.

5. Database design and creation

This chapter assumes that the reader is familiar with the general principles of relational databases including normal form and integrity constraints. For simplicity, we will document the use of the command line utility to carry out the steps discussed in this chapter.

Many activities could of course be automated using command scripts or application programs. For the latter, see Chapter 6.

5.1 Creating a Database

As mentioned in the last section, by default Pyrrho will create a database if necessary. To create a database, simply issue the command

PyrrhoCmd databasename
The file databasename.pfl (or databasename.osp for Open Source Pyrrho) will be created in the database folder, and owned by the server account. The database will not be completely empty: it will have two initial records. The first of these will be a User record identifying the client account as the owner of the database. The second will be a default Authority which permits all actions on the database. The User will be the client’s login ID. The default Authority will be the name of the database.

The remainder of this subsection can be skipped on a first reading.

For example, suppose the Pyrrho service account on VANCOUVER is PYR_USR, and user LONDON\Fred issues the command

PyrrhoCmd –h:VANCOUVER MyLibrary

This command assumes that Fred has access to the client program, and to port 5433 on VANCOUVER where PyrrhoSvr is already running. If database MyLibrary already exists on host VANCOUVER, and LONDON\Fred is allowed to access it, the command line utility will start up on the client computer with a connection to this database. If MyLibrary does not exist on VANCOUVER, the PyrrhoSvr will create a new database file MyLibrary.pfl in the database folder, which will be owned by PYR_USR. MyLibrary.pfl will have an initial User record for user ‘LONDON\Fred’ of type owner, and an Authority called ‘MyLibrary’ . In both cases, the PyrrhoCmd utility will now give the command prompt

SQL>

for SQL commands such as creation of the first few objects in this new database.

It is entirely reasonable for administrators to wish to limit the ability to create databases in the database folder. A better solution on a corporate network will be for databases to be initially created by their owners on their local machines but using their network login, and then copied by an administrator to the database folder on the server host. On the server host, the database folder should have permissions such that the server account cannot create new files. This approach would have the added advantage that the database file would actually continue to be owned by the client user. This is supported in the enterprise and datacenter editions of Pyrrho.

5.2 Creating database objects

When using CREATE TABLE and other SQL statements at the command prompt, bear the following points in mind:

· SQL2003 syntax is somewhat different from many legacy systems. In particular:

· Identifiers are not case-sensitive unless they are enclosed in double quotes

· Double-quoted identifiers can be used to avoid confusion with reserved words and for identifiers that contain special characters

· By default, variable length data types can be used, e.g. CHAR instead of CHAR(16). If size and precision are specified, values are truncated. Precision specification for numeric types, if specified, is in decimal digits (the SQL2003 standard is not clear on this).

· Single quotes are still used for string literals.

· Date, time, timestamp, and interval literals have a fixed syntax (e.g. DATE ‘2005-07-20’) and the formats are not locale-sensitive. 

In the current version the SQL2003 Timezone feature is not implemented (since it impedes moving a database between timezones), so time and timestamp are displayed for the local time zone on the computer in question, but are stored in the database in universal time.

For example the SQL statement

Insert into Winner ("YEAR",Rep) values (2005,'Fred')

will create a new record in an already-existing table WINNER(YEAR,REP) of form

	YEAR
	REP

	2005
	Fred


The double quotes are needed since YEAR is a reserved word in SQL2003. The single quotes are needed since Fred would otherwise be interpreted as a column name.

Database tables can also be created using PyrrhoMgr by importing the schema and/or data from another database: see section 4.3.7.

[image: image19.png]Bl C:\Amkc\PyrrhoCmdibin\Debug\PyrrhoCmd.exe HE





The illustration above shows an integer value (larger than “long”) in an “ordinary” integer field. The following example shows precision greater than double precision:

[image: image20.png]I8l Shortcut to PyrrhoCmd.exe HE

14691.3489012345678
SL> table ¢

12345 .678901234567890
2345.67





5.2.1 Indexes, Identity etc

Indexes are no longer supported in the SQL2003 standard. Integrity, uniqueness and referential constraints imply their use within the database engine, and behind the scenes Pyrrho uses indexes built in this way for automatic query optimisation.

Pyrrho does not have “identity”, “autonumber”, “sequence”, or “generator” features found in other databases. Instead, it has the following automatic feature, which it claims is better. Where a table has an integer primary key Pyrrho maintains its own concept of the next unused value of this key, and supplies it for any new record that does not supply a key value. This extension is self-evidently harmless, since explicit key values can be supplied if desired.

[image: image21.png]I8l Shortcut to PyrrhoCmd.exe HE

create table ach int primary key.c int)
insert into ach.c) values <2,3>

insert into alc) values <4)

insert into alc) values <5)

ingert into alc) values <1>

Select * from a

B
1
2
3
1
B

L>





Rows of a table are ordered within the database engine by the primary key, but here giving a definite value for the (2,3) row has made the rows seem to be in the wrong order.  If multiple rows are used in a single INSERT, as in “insert into a(c) values (4),(5),(1)”, the actual order of insertion will not necessarily seem to be the obvious one. If it is important to have Pyrrho display the rows in chronological order, then there are several options: avoid using a primary key altogether (since the chronological order is the default one if there is no primary key), use actual dates and time values to order the results, or use Pyrrho’s history features (section 3.5).

5.2.2 Temporal tables

Pyrrho supports a simple notion of "temporal table". This is defined more precisely in section 7.12. A temporal table corresponds loosely to a history of some sort, such that the last component of the primary key is a date D (or otherwise discriminates earlier from later entries). There should be no redundant dates, that is, if the primary key is used to order the rows in the table, successive rows always differ by more than just the D column.

For such tables T there are derived columns T.NEXT and T.LAST, of the same type as D (T.NEXT may be null), and a predicate CURRENT(D), which is equivalent to D=T.LAST . There is also a TEMPORAL JOIN construct on temporal tables, defined in terms of two low-level operations called FOLD and INTERLEAVE. For details see section 7.12. 

Note that there is no need to declare a table as temporal. If any of these operations are invoked on a non-temporal table, SQLSTATE 42128 "Illegal aggregation operation" will result.

It is possible to configure Pyrrho Enterprise and DataCenter to ignore records in a temporal table that are older than a given date. This can be convenient for very large temporal data sets (for example, scientific measurements).
5.3 Altering tables

SQL2003 allows for tables to be altered by adding, altering or dropping columns, and adding and dropping constraints.  

Tables can also be dropped. Pyrrho supports the renaming of objects, with the following syntax for renaming tables:

alter table oldname to newname
and similar syntax for renaming other objects. Renaming columns is a special case:

alter table tname alter [ column ] oldname to newname
The position of a column can also be changed. (Column positions have little semantic value but it is convenient to have a known ordering of columns in select * results.)

alter table tname alter [ column ] cname position n
When a database object is renamed all objects in the database are automatically updated to use the new name.

[image: image22.png][2l Shortcut to PyrrhoCmd.exe HE

create table acal int)
create view vu as select al from a
alter table a alter al to id
Select * from "SyssUieu





Pyrrho does not modify database data when column types are changed: the field specification is not treated as a constraint. Use check constraints if you want such behaviour.

[image: image23.png][l C:\mkc\PyrrhoCmd\bin\DebugiPyrehoCmd.exe (]|





5.4 Sharing a database with other users

One of the first uses for the client utilities should be to create the base tables of the database and grant permissions on them to users.  The best ways of doing this are explained in the next section. 

The database creator initially is the only user known to the database. Other users must be granted some specific privileges (so that they have a valid user id in the database) before they are allowed to make any changes to the database. The simplest (worst) way of sharing the database is to give all such named users permission to do anything, and all anonymous users permission to read anything:

Thus, under Windows, if database MyDb has nor security settings on it, the creator of the database can share it with user mary on computer (or domain) JOE by the following GRANT statement:

grant authority "MyDb" to "JOE\mary"
This allows mary to access or alter the database in any way except for security settings. The double quotes are needed because of case-sensitivity for database and user names. 


grant authority "MyDb" to public

This allows any user to access or modify the database MyDb, except for security settings. Other grant statements can be used to apply specific privileges to specific database objects. Privileges can be revoked using the REVOKE statement.

When users are granted permissions later, they are of course able to access current data as determined by their current privileges.  There are some special cases: the database owner is able to access all of the logs, and the system tables are public and read-only.

Pyrrho allows the loading of a database as it was at some past time. If user permissions have changed since the “stop time” an administrator may need to recreate the user id of some user who had access permissions at the time in question. This can always be established by opening the current version of the database and examining the logs. Note that Pyrrho user ids are user names (on Windows these have form "DOMAIN\user"), not the UIDs or SIDs used by the operating system.  (See section 3.5)

5.5 Authorities and Roles

The Pyrrho notion of Authority has been mentioned in earlier sections. Strictly speaking an Authority is a sort of role, but it has a description in addition to a name, and an authority possesses permissions directly, not through roles. Authorities can be granted to all the usual sorts of grantee (user, role, procedure etc).

An important difference is that a user only exercises the privileges of an authority for a connection that cites this authority. That is, although a user may be entitled to use several authorities, he/she can only use one at a time.

Authorities should directly hold privileges on objects, so grant role to authority is not permitted. Apart from the owner privilege (which can be held by just one user), granting privileges directly to users or roles is deprecated. It is recommended to grant authorities to users instead.

For example, suppose a small sporting club (such as squash or tennis) wishes to allow members to record their matches for ranking purposes:

Members: (id int primary key, firstname char)

Played: (id int primary key, winner int references members, loser int references members, agreed boolean)

For simplicity we give everyone select access to both these tables.

Grant select on members to public

Grant select on played to public
Although Pyrrho records which user makes changes, it will save time if users are not allowed to make arbitrary changes to the Played table. Instead we will have procedure Claim(won,beat) and Agree(id), so that the Agree procedure is effective only when executed by the loser. With some simple assumptions on user names, the two procedures could be as simple as:

Create procedure claim(won int,beat int) 

insert into played(winner,loser) values(claim.won,claim.beat)

Create procedure agree(p int) 

  update played set agreed=true 

     where id=agree.p and 

loser in (select m.id from members m where current_user like ('%'||firstname))

These two procedures have insert and update access to the Played table respectively. 

Grant insert on played to procedure claim(int,int)
Grant update on played to procedure agree(int)
We want all members of the club to be able to execute these procedures. We could simply grant execute on these procedures to public, or by means of a role, and Pyrrho supports such usage. However, it is better practice to grant these permissions instead to an authority (say, membergames) and allow any member to use this authority:

Create authority membergames 'Matches between members for ranking purposes'
Grant execute on procedure claim(int,int) to authority membergames
Grant execute on procedure agree(int) to authority membergames
Grant authority membergames to public

This example could be extended by considering the actual use made of the Played table in calculating the current rankings, etc.

Authorities (and roles) are dynamic: privileges can be added to or removed from them. In Pyrrho such changes for roles immediately cascade to all grantees (that is, the role is revoked, the modification to the role is made, and then the grant of the role is restored). Changes to authority permissions do not cascade in this way, but are gained when the authority is invoked.

There is a very special authority which is required for schema modifications, i.e. adding or altering objects in the database (it is not required for adding or altering records or permissions). This is the default authority, which has the same name as the database, and was referred to in the sample code in the last section. Initially, only the owner of the database can use and administer this authority (this is the only initial privilege of the database owner). The default authority initially has no other privileges than the ability to perform schema modifications, however as new objects are created the default authority gains the use and administration of all relevant privileges on them. This initial state is then subject to modification by the normal Grant and Revoke mechanisms. It is recommended to regulate the use of the database owner user id and the default authority rather than to revoke privileges from them. 

The default authority of the database is the database name on creation, and so if the database filename has changed (not recommended), connecting to the default authority will require explicit reference to the old value (or SET AUTHORITY oldname). 

The System tables can be used to ascertain the privileges held at any time.

5.6 Stored Procedures and Functions

Pyrrho supports stored procedures and functions following the SQL2003 syntax (volumes 2 and 4). The programming model offered in this way is computationally complete, so the use of external code written in other programming languages is not supported. 

In SQL2003 the syntax :v is not supported for variable references, and instead variables are identified by qualified identifier chains of form a.b.v . The syntax ? for parameters is not supported either.

In SQL2003-2-11.50 we see that procedures never have a returns clause (functions should be used if a value is to be returned), and procedure parameters can be declared IN, OUT or INOUT and can be RESULT parameters. Variables can be ROW types and collection types. For functions, TABLE is a valid RETURNS type (it is strictly speaking a “multiset” in SQL2003 terminology). From SQL2003-2-6.39 we see that RETURN TABLE ( queryexpression ) is a valid return statement. 
Here are some outlines of procedure statements specified in SQL2003-4 and supported in Pyrrho. Complete syntax summaries for Pyrrho are given in chapter 7.

5.6.1 Table-valued functions

create table author(id int primary key, aname char)

create table book(id int primary key, authid int, title char)

...

[ create function booksby(auth char) returns table(title char)

  return table(select title from author a inner join book b on a.id = b.authid where aname = booksby.auth ) ]
This example also shows that a routine body is a single procedure statement (possibly a compound BEGIN..END statement). For the square brackets, see section 4.2.5. 

The above function can be referenced by statements such as

select * from table(booksby('Charles Dickens'))
The keyword table in this example is required by SQL2003-2(7.6).
5.6.2 Simple statements

Semicolons are used as separators in statements lists, and are not part of any statement syntax. Declarations can appear anywhere in a statements list (which defines the scope of the declaration). 

BEGIN statements END 

DECLARE varnames type

SET id = value

SET ( ids ) = value

SQL statements such as CREATE, GRANT, INSERT, DELETE, REVOKE, DROP are also allowed here, as are SELECT  INTO , which is basically queryexpression INTO ids .

RETURN value

CALL procedure ( values )

5.6.3 Decision Statements

CASE value { WHEN value THEN statements } [ ELSE statements ] END CASE

CASE WHEN searchcondition THEN statements [ ELSE statements ] END CASE

IF condition THEN statements { ELSEIF condition THEN statements } [ ELSE statements ] END IF

5.6.4 Iterative statements

Iterative statements can be labelled (with an identifier followed by a colon) and LEAVE and ITERATE statements can refer to these labels, to break out of nested loops or skip to the next iteration of a loop. Variable references to variables declared inside these constructs can be of form label.name .

FOR queryexpression DO statements END FOR

LOOP statements END LOOP

WHILE searchcondition DO statements END WHILE

REPEAT statements UNTIL searchcondition END REPEAT

LEAVE label

BREAK

ITERATE label

5.6.5 Condition handling statements

The following condition handling apparatus (as specified in SQL2003) is also supported. The predefined conditions are SQLEXCEPTION, SQLWARNING and NOT FOUND. All of the following can appear where statements are expected, and handlers apply anywhere in the scope where they are declared.

DECLARE id CONDITION

DECLARE CONTINUE HANDLER FOR conditions statement

DECLARE EXIT HANDLER FOR conditions statement

SIGNAL condition

5.6.6 Examples

The following functions perform the same task. The first uses a handler, while the second uses a for statement.

create function gather1() returns char 

begin 

  declare c cursor for select a2 from a;

  declare done Boolean default false;

  declare continue handler for sqlstate '02000' set done=true;

  declare a char default '';

  declare p char;

  open c;

  repeat

    fetch c into p;

    if not done then 

      if a = '' then

        set a = p

      else

        set a = a || ', ' || p

      end if

    end if

  until done end repeat;

  close c;

  return a
end

create function gather2() returns char

begin

  declare b char default '';

  for select a2 from a do 


if b='' then



set b = a2


else



set b = b || ', ' || a2


end if

  end for;

  return b

end
[image: image24.png]&l Shortcut to PyrrhoCmd.exe

SQL> insert into ¢ values(gather2(>>

First, Second





5.6.7 SQLSTATE

Pyrrho supports the following SQLSTATE conditions, shown here with messages for locale “en”:

	SQLSTATE
	Message Template (and comments)

	00000
	Transaction Conflict

	01010
	Warning: column cannot be mapped

	02000
	Not found

	0N000
	SQLXML mapping error

	0N001
	SQLXML mapping error: unmappable XML name

	0N002
	SQLXML mapping error: invalid XML character

	21000
	Cardinaility errors from specific codes below

	21101
	Element requires a singleton multiset

	22000
	Data and  incompatible type errors from specific codes below

	22003
	Out of bounds value

	22004
	Illegal null value

	22005
	Wrong types: expected ? got ?

	22007
	Expected keyword ? at ?

	22008
	Minus sign expected (DateTime)

	22009
	(DateTime format error)

	2200D
	Index out of range

	2200G
	Type mismatch: expected ? got ?

	2200J
	Nonidentical notations with the same name

	2200K
	Nonidentical unparsed entities with the same name

	2200N
	Invalid XML content

	2200S
	Invalid XML comment

	22010
	Space expected (DateTime)

	22011
	Colon expected (DateTime)

	22012
	More than 6 decimal places of seconds precision

	22013
	Digit expected (DateTime)

	22014
	Year out of range

	22015
	Month out of range

	22016
	Day out of range

	22017
	Hour out of range

	22018
	Number in range 0..59 expected (DateTime)

	22019
	Unexpected extract ? (DateTime)

	22021
	Illegal character for this char set

	22023
	Too few arguments

	22024
	Too many arguments

	22101
	Bad row compare

	22102
	Type mismatch on concatenate

	22103
	Multiset element not found

	22104
	Incompatible multisets for union

	22105
	Incompatible multisets for intersection

	22106
	Incompatible multisets for except

	22107
	Exponent expected

	22108
	Type error in aggregation operation

	22201
	Unexpected type ? for comparison with Decimal

	22202
	Incomparable types

	22203
	Loss of precision on conversion

	22204
	Query expected

	22205
	Null value found in table ?

	22206
	Null value not allowed in column ?

	22207
	Row has incorrect length

	23000
	(Integrity constraint, duplicate key)

	23001
	RESTRICT: ? referenced in ? (A referenced object cannot be deleted)

	23101
	Integrity constraint on referencing table ? (delete)

	23102
	Integrity constraint on referencing table ? (update)

	23103
	(This record cannot be updated, usually integrity violation)

	23201
	? cannot be updated

	23202
	BEFORE data is not updatable

	24000
	Cursor status error from specific codes below

	24101
	Cursor is not open

	26000
	Unexpected label ?

	28000
	No authority ?

	28101
	Unknown grantee kind

	28102
	Unknown grantee ?

	2E000
	Incorrect Pyrrho connection or security violation from specific codes below

	2E101
	This free version is limited to 8MB data files

	2E103
	This server disallows database creation by ?

	2E104
	Database is read-only

	2E105
	Invalid user ? for database ?

	2E106
	This operation requires a single-database session

	2E107
	This external procedure already has an implementation

	2E108
	Stop time was specified, so database is read-only

	2E109
	Invalid authority ? for database ?

	2E110
	Procedure ? is not marked external

	2E111
	User ? can access no columns of table ?

	2E201
	Connection is not open

	2E202
	A reader is already open

	2E203
	Unexpected reply

	2E204
	Bad data type ? (internal)

	2E205
	Stream closed

	2E206
	Internal error: ?

	2E207
	Connection failed

	2E208
	Badly formatted connection string ?

	2E209
	Unexpected element ? in connection string

	2E210
	Pyrrho DBMS service on ? at port ? not available (or not reachable)

	2E211
	Feature {0} is not available in this edition of Pyrrho

	2E212
	Database ? is loading. Please try later

	2H000
	(Non-existent collation/Collate on non-string)

	34000
	No such cursor

	3D000
	Could not use database ? (database not found or damaged)

	3D001
	Database ? not open

	3D002
	Cannot detach preloaded databases

	3D003
	Remote database no longer accessible

	3D004
	(Exception reported by remote database)

	3D005
	Requested operation not supported by this edition of Pyrrho

	3D006
	Database ? incorrectly terminated or damaged

	3D007
	Pathname not supported by this edition of Pyrrho

	3D008
	Database file ? has been damaged

	3D009
	(Automatic database recovery from file damage failed)

	42000
	Syntax error at ?

	42101
	Illegal character ?

	42102
	Name cannot be null

	42103
	Key must have at least one column

	42104
	Proposed name conflicts with existing database object (e.g. table already exists)

	42105
	Access denied

	42106
	Undefined variable ?

	42107
	Table ? undefined

	42108
	Procedure ? not found

	42109
	Table-valued function expected

	42110
	Column list has incorrect length: expected ?, got ?

	42111
	The given key is not found in the referenced table

	42112
	Column ? not found

	42113
	Multiset operand required, not ?

	42114
	Object name expected for GRANT, got ?

	42115
	Unexpected object type ? ? for GRANT

	42116
	Role revoke has ADMIN option not GRANT

	42117
	Privilege revoke has GRANT option not ADMIN

	42118
	Unsupported CREATE ?

	42119
	Domain ? not found in database ?

	4211A
	Unknown privilege ?

	42120
	Domain or type must be specified for base column ?

	42121
	Cannot specify collate if domain name given

	42123
	NO ACTION is not supported

	42124
	Colon expected ..

	42125
	Unknown Alter type ?

	42126
	Unknown SET operation

	42127
	Table expected

	42128
	Illegal aggregation operation

	42129
	WHEN expected

	42130
	Ambiguous table or column reference ?

	42131
	Invalid POSITION ?

	42132
	Method ? not found in type ?

	42133
	Type ? not found

	42134
	FOR phrase is required

	42135
	Object ? not found

	42136
	Ambiguous field selector

	42137
	Field selector ? on non-structured type

	42138
	Field selector ? not defined for ?

	42139
	:: on non-type

	42140
	:: requires a static method

	42141
	? requires an instance method

	42142
	NEW requires a user-defined type constructor

	42143
	? specified more than once

	42144
	Method selector on non-structured type ?

	42145
	Cannot supply value for generated column ?

	42146
	OLD specified on insert trigger or NEW specified on delete trigger

	42147
	Cannot have two primary keys for  table ?

	42148
	FOR EACH ROW not specified

	42149
	Cannot specify OLD/NEW TABLE for before trigger

	42150
	Malformed SQL input (non-terminated string)

	42151
	Bad join condition

	42152
	Column ? must be aggregated or grouped

	42153
	Table ? already exists

	42154
	Unimplemented or illegal function ?

	42155
	Nested types are not supported

	42156
	Column ? is already in table ?

	42157
	END label ? does not match start label ?

	42158
	? is not the primary key for ?

	42159
	? is not a foreign key for ?

	42160
	? has no unique constraint

	42161
	? expected at ?

	42162
	RDF Triple expected

	44000
	Check condition ? fails

	44001
	Domain check fails for ? in table ?

	44002
	Table check ? fails

	45000
	Java Persistence exception

	45001
	No Entity information for ?

	45002
	Unknown annotation value type

	45003
	Unmapped relationship ?

	45004
	No primary key for ?

	45005
	Undefined parameter ?

	45006
	Foreign Key for ? not found

	45007
	Incorrect number of join columns for ?

	45008
	? is not a secondary table


5.7 Structured Types

SQL2003 supports structured types. Structured types, multisets and arrays can be stored in tables. There is a difference between (say) a table with certain columns, a multiset of rows with similarly named fields and a multiset of a structured type with similarly named attributes, even though in an element of each of these the value of a column, field or attribute respectively is referenced by syntax of the form a.b . Some constructs within SQL2003 overcome these differences: for example the INSERT statement uses a set of values of a compatible row type to insert data into a table, and TABLE v constructs a table out of a multiset v.

To use structured types, it is necessary to CREATE TYPE for the structured type: this indicates the attributes and methods that instances of the type will have. Then a table (for example) can be defined that has a column whose vales belong to this type. At this stage the table could even be populated since (there is an implicit constructor for any structured type); but before any methods can be invoked they need to be given bodies using the CREATE METHOD construct. Note that you cannot have a type with the same name as a table or a domain (since a type has features of both).

Values of a structured type can be created (using NEW), assigned to variables, used as parameters to suitably declared routines, used as the source of methods, and placed in suitably declared fields or columns.

[image: image25.png]Create
Create
Create
Create
int,y2
Create
Create

insert
insert
insert
insert
tabl

type
type
type
type

Point as Cx_int, y int>

Size as (u dnt, h int>

line as (strt point, en point)

rect as (tl point,sz size) constructor method rectxl int,uyl in

int), method centre() returns point
table Figure (id int primary key title char>
table FigureLineCid int primary key,Fig int references figure, what

table FigureRect(id int primary key.fig int references figure, what

constructor method rect(xi int,yl int,x2 int.y2 int) begin t1 = poin
= sizeGa-x,y2-yi> end

into
into
into
into

sigure valuescl, ’Diagran’>
figurerect valuesCi i, rectCpoint(l 2),size(3, 42>
Figurerect values<2, 1 rectCd 5 6,755

figureline valuesci 1 TineCotnirorect 1), controrect ()





Arrays and multisets of known types do not need explicit type declaration. Their use can be specified by the use of the keyword ARRAY or MULTISET following the type definition of a column or domain.

5.8 Triggers

SQL2003 supports triggers. 

Pyrrho has built-in facilities to do activity logging (see section 3.5 and 8.2). However, triggers allow for a more customizable approach as the following example shows:

create table test1(id int primary key,val char)

create table test2(id int primary key,ent char,val char)

create procedure log(g char,h char) insert into test2(ent,val) values(g,h)

create trigger loginsert after insert on test1 referencing new row as a for each row log('inserted',a.val)

create trigger logupdate before update on test1 referencing old row as a new row as b for each row log(a.val,b.val)

create trigger logdelete before delete on test1 referencing old row as a for each row log('deleted',a.val)
insert into test1 values(1,'First'),(2,'Second')

table test2

update test1 set val='New One' where id=1

table test2

delete from test1 where id=2

table test2

[image: image26.png]&l PyrrhoCmd
[saL> Btrig.sal





In SQL2003 the body of a trigger must be a procedure call statement, as here. Triggers are particularly useful if the procedure call in question is to an external procedure, i.e. a procedure in the database client application. See section 6.8.

5.9 XML and XPath

Pyrrho supports XML-valued columns as in SQL2003. In addition it supports a built-in XPath function which enables the use of standard XQuery utilities.

The syntax of XPath 2.0 is defined in http://www.w3.org/TR/xpath20/ and an informal synopsis of the syntax of PathExpr is provided here for convenience:

PathExpr = (‘/’ [RelativePathExpr] ) | (‘//’ RelativePathExpr ) | RelativePathExpr .

RelativePathExpr = StepExpr {(‘/’|’//’)StepExpr} .

StepExpr = FilterExpr | AxisStep .

AxisStep = (ReverseStep | ForwardStep) PredicateList .

PredicateList = { Predicate } .

Predicate = ‘[‘ Expr { ‘,’ Expr } ‘]’ .

Expr = ForExpr | QuantifiedExpr | IFExpr | OrExpr .

ForExpr = ‘for’ ‘$’ Varname ‘in’ Expr {‘,’ ‘$’ Varname ‘in’ Expr } ‘returns’ Expr .

QuantifiedExpr = (‘some’|’every’) ‘$’ Varname ‘in’ Expr {‘,’ ‘$’ Varname ‘in’ Expr } ‘satisfies’ Expr .

IfExpr = ‘if’ ‘(‘ Expr ‘)’ ‘then’ Expr ‘else’ Expr .

OrExpr = AndExpr  { ‘or’ AndExpr } .

AndExpr = ComparisonExpr { ‘and’ ComparisonExpr } .

ComparisonExpr = RangeExpr [ (ValueComp|GeneralComp|NodeComp) RangeExpr ] .

RangeExpr = AdditiveExpr [ ‘to’ AdditiveExpr ] .

AdditiveExpr = MultiplicativeExpr { (‘+’|’-‘) MultiplicativeExpr } .

MultiplicativeExpr = UnionExpr { (‘*’|’div’|’idiv’|’mod’) UnionExpr } .

UnionExpr = IntersectExceptExpr { (‘union’ | ’|’) IntersectExceptExpr } .

IntersectExceptExpr = InstanceOfExpr { (‘intersect’|’except’) InstanceOfExpr } .

InstanceOfExpr = TreatExpr [ ‘instance’ ‘of’ SequenceType ] .

TreatExpr = CastableExpr [ ‘treat’ ‘as’ SequenceType ] .

CastableExpr = CastExpr [ ‘castable’ ‘as’ SingleType ] .

CastExpr = UnaryExpr [ ‘cast’ ‘as’ SingleType ] .

UnaryExpr = (‘+’|’-‘) PathExpr .

ValueComp = ‘eq’ | ‘ne’ | ‘lt’ | ‘le’ | ‘gt’ | ‘ge’ .

GeneralComp = ‘=’ ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ .

NodeComp = ‘is’ | ‘<<’ | ‘>>’ .

ForwardStep = (ForwardAxis NodeTest) | AbbrevForwardStep .

ReverseStep = (ReverseAxis NodeTest) | AbbrevReverseStep .
ForwardAxis = (‘child’ ‘::’) | ( ‘descendant’ ‘::’ ) | (‘attribute’ ‘::’) | (‘self’ ‘::’) | (‘descendant-or-self’ ‘::’) | (‘following-sibling’ ‘::’ ) | (‘following’ ‘::’ ) | (‘namespace’ ‘::’) .

ReverseAxis = (‘parent’ ‘::’ ) | (‘ancestor’ ‘::’) | ( ‘preceding-sibling’ ‘::’ ) | (‘preceding’ ‘::’) | (‘ancestor-or-self’ ‘::’) .

NodeTest = KindTest | NameTest .

NameTest = QName | Wildcard .

Wildcard = ‘*’ | (NCName ‘:’ ‘*’) | (‘*’ ‘:’ NCName ) .

Note that QName and NCName are defined in other W3 standards and are not further explained here.

KindTest = DocumentTest | ElementTest | AttributeTest | SchenaElementTest | SchemaAttributeTest | PITest | CommentTest | TextTest | AnyKindTest .

DocumentTest = ‘document-node’ ‘(‘ [ElementTest | SchemaElementTest] ‘)’ .

ElementTest = ‘element’ ‘(‘ [ElementNameOrWildcard [‘,’ Type_QName [‘ ?’]]]’)’ .

SchemaElementTest = ‘schema-element’ ‘(‘ Element_QName ‘)’ .

AttributeTest = ‘attribute’ ‘(‘ [AttribNameOrWildcard [‘,’Type_QName]]’)’ .

SchemaAttributeTest = ‘schema-attribute’ ‘(‘ Attribute_QName ‘)’ .

PITest = ‘processing-instruction’ ‘(‘ [NCName | string] ‘)’ .

CommentTest = ‘comment’ ‘(‘ ‘)’ .

TestTest = ‘text’ ‘(‘ ‘)’ .

AnyKindTest = ‘node’ ‘(‘ ‘)’ .

5.10 RDF and Pyrrho
RDF has been developed within W3C to allow semantic information to be added to data sources in order to support exchange of information over the Web. The idea is that people identify concepts, classes, properties etc using IRIs (IRIs are international versions of URIs), but there is no expectation that any concept will be described by just one IRI. RDF uses triples of the form subject predicate object , and such triples combine to form semantic graph structures. Pyrrho directly supports the storage of such graphs, in a special base table called “Rdf$”, but this data is normally accessed and manipulated using the SPARQL query language.

W3C has developed the SPARQL query language specifically to support RDF. Pyrrho directly implements the latest SPARQL standard. As of version 0.6 of Pyrrho this is revision 1.9 (6 April 2006) of SPARQL, and a report on compliance testing is available on the website www.pyrrhodb.org.

The web technologies associated with RDF (SPARQL, XPath, XQuery etc) envisage extensibility and the definition of custom types and extension functions, but at present implementations can define their own mechanisms for such functionality. It does seem advantageous however to be able to access the database’s defined types and stored procedures from SPARQL and this is the case here, using a reasonably intuitive mapping of SPARQL data types to SQL’s.

In addition to RDF data explicitly stored in the database, Pyrrho represents the content of a database within its unnamed graph, in such a way that tables, columns, etc can be assigned semantics and referred to using IRIs. In this way the meaning of a column or domain is inherited by its values, and the meaning of a table is inherited by its rows. For example if (T, :Means, P) and x (T then  (x, a, P). This mechanism is described in section 5.10.2.

5.10.1 SPARQL interface

SPARQL may be used with the HTTP request mechanism described in section 3.6. By default the reply is in xml format as described in the W3C standard. 

Also, the keyword RDF, followed optionally by a graph name, at the start of an SQL statement means that (after some optional parameters) SPARQL input follows, enclosed in ( ), i.e.

RDF [(SAVE|RETRACT) [Graph_id]] ‘(‘ sparql ‘)’

Any data returned will be in the same table format used by the SQL interface. The optional parameters include a graph IRI (double-quoted) for a SAVE or RETRACT operation: and are used only with the CONSTRUCT sparql form. For example:

RDF SAVE ( CONSTRUCT { <College/1427> :Means <http://uni.edu/rdf#Student>  } )

RDF ( SELECT ?title WHERE { <book>  <title> ?title })

The current database contains the default unnamed graph. The default base for IRIs is the IRI of the current connected database. In the first example, Means is a built-in Pyrrho property.  In the second example <title> is evidently a column and <book> a table in the current database. See section 5.10.2. 

The SPARQL CONSTRUCT query can be used to add explicit triples to the specified graph, as in the first example above. Addition of RDF data is committed or rolled back if contained in a transaction.

SAVE and RETRACT operations are idempotent, that is, a second SAVE of a construct statement C adds further triples only if the triples to be added depend on the contents of the dataset, or if some other operation intervenes between the two executions of C. This is because Pyrrho merges identical graphs: graphs are regarded as identical if their arcs and nodes can be made to correspond. Labelled nodes and arcs correspond if they have the same label. Blank nodes and arcs correspond by means of some one-to-one mapping of blank labels. 
[image: image1.jpg]UNIVERSITY

QofPAISLEY



5.10.2 Implied RDF for relational data

A Pyrrho database adds some semantics of its own in the following ways. Data in the database may be referred to using IRIs as described in section 5.10.4 below. 

The table below lists these built-in properties, where p:  is http://www.pyrrhodb.org/2006/rdf# .
	Property
	Meaning

	p:Table
	Associates table IRI with table name

	p:Column
	Associates column IRI with column name

	p:Row
	Associates table IRI with row IRI

	ColumnIRI
	Associates row IRI with value for that column


5.10.3 Rdf$ implementation
Explicit RDF triples are stored in a table (called “Rdf$”) with the following form

Rdf: (val char unique, subj int references rdf(position), pred int references rdf(position), obj int references rdf(position), graph int references rdf(position))

Val will often be an IRI enclosed in <>: some IRIs will refer to database objects using a custom IRI format below; may also be explicit RDFLiterals or help strings. Named graphs are always identified by an IRI, and the graph field may be null for the unnamed graph.

	Pos
	Val
	Subj
	Pred
	Obj
	Graph

	6789
	"abc"
	
	
	
	

	7864
	42

	
	
	
	

	9876
	<http://ex.org/#hij>
	
	
	
	

	18882
	
	9876
	7864
	6789
	


As indicated here, Sparql’s convenience shortcuts for standard types are supported. Within the Sparql subsystem a literal such as 42 here will match "42"^^<http://www.w3.org/2001/XMLSchema#integer> . As shown here, typed literals, including XML literals, should be given as a quoted string and a type, and apart from the standard convenience forms the type needs to be given as an explicit IRI.

However, the illustration here also shows that no part of the internal implementation of the Rdf or Sparql type system is stored in the database. Also, qualified names and variables are not stored in the table. Blank nodes can be stored in the table, using identifiers such as _:17 .
5.10.4 Pyrrho IRI

Information in a Pyrrho database (including values in the RDF table) can be referenced in a permanent IRI with format

<http://hostname[:port]/[dbname[(/(pos| name) [/(pos|name)]][#predicate])>
or

<pyrrhodb://hostname[:port]/[dbname[(/(pos| name) [/(pos|name)]] [#predicate]|)>

By default the value returned is XML. If this contains RDF information, then the predicate part can be used to refer to a particular element within it.

In addition, the first part of an IRI can be defined in the Base. Thus a Pyrrho IRI can be for a Pyrrho host, a database, or a record or database object. If only one pos is supplied it gives the defining position of a database object or record. If two are supplied the second one gives the defining position of a column, so that the pair defines a cell in a base table. These defining positions are used instead of column names, primary keys etc because both names and key values can be altered, and the same IRI now refers to the updated value. See section 3.5.

The PyrrhoDb protocol, see section 6.13 and 3.6, requires a Pyrrho IRI of form pyrrhodb://hostname[:port]/dbname/pos/pos and allows get or set of a single cell value. A Pyrrho IRI gives access to current information in the database irrespective of its logical referents (null is returned if there is no corresponding current information, e.g. if the record has been deleted or the table or column dropped). 
A IRI can be simply obtained for rows and values returned from any query using the GetIRI function defined in section 8.4.3. By default this returns the pyrrhodb version of the IRI, which provides pre-authentication and uses encryption for the connection string, so is preferable to the http version. 

The RDF dataset contained in an Pyrrho database is exposed for the SPARQL protocol by an IRI containing the path element sparql/, e.g.

<http://hostname[:port]/dbname/sparql>
or 

<pyrrhodb://hostname[:port]/dbname/sparql>

5.10.5 Database Types and Stored Procedures

SPARQL supports a subset of the XQuery standard types. It is convenient to indicate corresponding base types in the database, to facilitate the use of stored procedures from SPARQL. In the following table the prefix xsd stands as usual for <http://www.w3.org/2001/XMLSchema#>
	SPARQL data type
	SQL data type
	Comments

	xsd:integer
	INT,INTEGER
	

	xsd:decimal
	NUMERIC
	There is no SQL type exactly matching xsd:double

	xsd:dateTime
	TIMESTAMP
	

	xsd:boolean
	BOOLEAN
	There is no value corresponding to Error

	xsd:string
	CHAR(0)
	Only UTF8 is supported


SPARQL does not provide mechanisms for accessing fields within structured types, or for defining how operators, comparison etc work with extension types. 

When accessing database content from SPARQL, bear in mind that unquoted database identifiers will need to be given in upper case.

[image: image27.png]& Visual Studio 2005 Command Prompt - PyrrhoCmd

fsa1> ~C
C:\nko\PyrrhoNet2 .8>PyrrhoCnd

[SOL> create function inclBCx int) returns int return x+10
fsaL>





[image: image28.png][ SPARQL

Host

locakhost

Database [Temp

preis

prei
<o

<hitp s pyhodt, org/2008 /ity

b /focalhost 8080/ Temp/>

seloct
{ 7 pColumn "1 770 .
FILTER{dINCI0vb11)}

Sove





5.11 OLAP and window functions

From version 1.1, Pyrrho supports the advanced OLAP functions specified in the SQL standard, including advanced grouping and window functions.

For example, given a table M of form (Till int, T time, V numeric), the SQL statement

Select Till,T,sum(V) over (partition by till order by T range between current row and interval ’01’ hour following) as S from M order by T

is valid. A full introduction to data analysis using OLAP is beyond the scope of this document. If any performance issues with this new functionality are discovered, please notify them to malcolm@pyrrhodb.com.

6. Pyrrho application development

This section contains technical information required by database application programmers. For many purposes the first few subsections are sufficient.

For simplicity, it is assumed in this sections 6.1-6.13 that the application programmer is writing in C#. The details for other programming languages are similar. Section 6.14 deals with the Java Persistence class library, which is available only with Open Source Pyrrho.

6.1 Getting Started

The programming model is ADO.NET, which is accessible in the common language runtime by 

using System.Data;

However, Pyrrho provides a small dll for making the initial TCP/IP connection to the PyrrhoServer.

using Pyrrho;

The dll also contains classes for using the complex SQL2003 data types of MULTISET and ARRAY, described in section 6.8. 

6.2 Using the client library

Unless the dll is istalled in the global assembly cache, it should be copied to the same folder as the application executable. If you are using a tool such as Visual Studio to develop your application, ensure that the project references PyrrhoLink.dll or OSPLink.dll. You may need to browse to the location where Pyrrho has been installed. Visual Studio will then make information from PyrrhoLink.dll available during compilation and place a copy of PyrrhoLink.dll or OSPLink.dll in the same folder as the executable.

If you are using the .NET SDK instead of Visual Studio, then when your application is compiled, you will need to mention the reference to PyrrhoLink.dll or OSPLink.dll in the compilation command line:

csc –r:PyrrhoLink.dll test.cs

assuming that a copy of PyrrhoLink.dll is in the folder where compilation takes place.

If you are using Visual Studio or one of the Visual Express editions, you can add PyrrhoLink’s PyrrhoConnect and PyrrhoDataSource controls to the ToolBox by browsing to the client library. See section 6.9.

6.3 Opening and closing a connection

The database connection is provided using the standard ADO.NET IDbConnection interface:

IDbConnection db = new PyrrhoConnect(connectionstring);

See section 6.4 for details of the connection string. A sample is provided below. If you are using the WindowsForms designer there is a wizard that helps: see section 6.9.
The connection must be opened before it can be used:
db.Open();
The function Pyrrho.PyrrhoConnect is provided in Pyrrho.dll. 

Connections should be closed when no longer required:


db.Close();

An application may use this cycle many times during its operation, as connections may be opened using different authorities. Uncommitted transactions are silently rolled back when the connection is closed (see section 8.4). For other details of the IDbConnection interface, see the ADO.NET documentation. Two functions in this interface described below are CreateCommand (section 6.5) and BeginTransaction (section 6.7). 

As usual with ADO.NET, at most one IDataReader can be open for any connection. Remember to close the IDataReader before calling another ExecuteReader.

For example, the following console program connects to a database Movies on the local server, and lists the TITLEs found in table MOVIE:

using System.Data;

using Pyrrho;

class Test

{

   public static void Main(string[] args)

   {

IDbConnection db = 
new PyrrhoConnect("Files=Movies");

db.Open();

IDbCommand cmd = db.CreateCommand();

cmd.CommandText = "select title from Movie";

DataReader rdr = cmd.ExecuteReader();

while (rdr.Read())

Console.WriteLine((string)rdr["TITLE"]);

rdr.Close();

db.Close();

   }

}

Note that SQL is not normally case sensitive: see section 5.2. If you want SQL identifiers to be case sensitive, you will need to double-quote them, and in C# strings, the double-quote will need to be escaped.
6.4 The connection string

The possible fields in the connection string are as follows:

	Field
	Default value
	Explanation

	Authority XE "Authority" 
	databasename
	The authority for the operations to be carried out

	Files XE "Files" 
	
	One or more comma-separated database file names (excluding the .pfl extension). On Enterprise and higher editions, these can be path names. Characters ,;= within names are not allowed.

	Host XE "Host" 
	localhost
	The name of the machine providing the service. 

	Locale XE "Locale" 
	
	The name of the locale to be used for error reporting. The default is supplied by the .NET framework.

	Port XE "Port" 
	5433
	The port on which the server is listening

	Provider XE "Provider" 
	PyrrhoDBMS
	

	Stop
	
	If a value is specified, this means that Pyrrho is to load the database as it was at some past time. 

	WriterHost
	
	Reserved for internal use (Datacenter Edition)

	WriterPort
	
	Reserved for internal use (Datacenter Edition)


There is a designer accessible from Visual Studio or the Express Editions to construct a connection string. It is associated with the ConnectionString property of the PyrrhoConnect control. See section 6.9.

6.5 Commands

The IDbCommand XE "IDbCommand"  interface is fully described in the ADO.NET documentation. To get an IDbCommand object, use the CreateCommand() method of IDbConnection, e.g.:

IDbCommand cmd = db.CreateCommand();

The simplest use of IDbCommand is to set the CommandText property, and then call ExecuteReader XE "ExecuteReader" () or ExecuteNonQuery XE "ExecuteNonQuery" ().

	Property or Method signature
	Explanation

	string CommandText XE "CommandText" 
	Sets the text of the command. The value should be a valid SQL statement: see section 7 for a reminder of SQL syntax.

	IDataReader XE "IDataReader"  ExecuteReader()
	Executes an SQL SELECT statement. Returns an IDataReader for examining the resulting data. A connection can have at most one IDataReader open at any time.

	int ExecuteNonQuery()
	Executes other sorts of SQL statements. Returns an int, which for simple data manipulation statements such as DELETE or UPDATE gives the number of rows affected in the specified table.


ExecuteReader and ExecuteNonQuery can raise exceptions, as described in section 6.8.

6.6 DataReaders

The IDataReader XE "IDataReader" \b  interface is fully described in the ADO.NET documentation. To get an IDataReader, call the ExecuteReader() method of IDbCommand, e.g.:


IDataReader rdr = cmd.ExecuteReader();

The columns that will be returned in the rows of the DataReader can be accessed using the following IDataReader methods (extracted from the IDataRecord part of the IDataReader interface):

	Property or Method signature
	Explanation

	int FieldCount XE "FieldCount" \b 
	Gets the number of fields returned per row

	string GetName XE "GetName" (int i)
	Returns the name of the ith field (the first field is field 0)

	Type GetFieldType XE "GetFieldType" (i)
	Returns the System.Type XE "System.Type"  of the ith field


Before an IDataReader can access any data, the Read() method must be called. Each time it is called, it moves on to the next row of the results if there is one. This function returns a Boolean value: which is true if Read() has succeeded in moving to the next row of data, and false if there is no more data.

Assuming that Read() has returned true, the fields in the returned row can be obtained by indexing the DataReader object. Fields can be indexed by ordinal position or by name. The value returned is a System.Object. If the corresponding value might be a null value, then it can be checked against DBNull XE "DBNull" .Value (or for being DBNull) before being cast to the expected System.Type.

For example:


if (!(rdr[1] is DBNull)) then Console.WriteLine((string)rdr[1]);

For languages where casting to different types is awkward, the DataReader XE "DataReader"  interface has a range of functions of form GetByte(i), GetInt64(i) etc. For integers and numerics whose precision cannot fit into the standard types, Pyrrho returns a string representation. If this is expected, then you should test if the value is string .

	SQL basic type
	.NET data type

	Boolean
	System.Boolean

	Int, integer
	System.Int64

	Real, Float
	System.Double

	Char, NChar, CLOB, NCLOB
	System.String

	BLOB
	System.Byte[]

	Date, Timestamp
	System.DateTime

	Row, Interval, Array, Multiset
	See section 8.4


If indexing by name is used, remember that strings in the programming language are case-sensitive, even though SQL (unquoted) identifiers are not, so you will probably need to ensure your field names are in upper case letters.

The client library uses the DataReader interface with as few added classes as possible. The only added classes are PyrroRow, PyrrhoArray, and PyrrhoInterval. Dates and Timestamps use the DateTime class in the common language runtime, Times use the TimeSpan class for a simple time of day, but Intervals are handled using PyrrhoInterval. The three new classes are documented in section 6.8.

6.7 Transactions

As is usual with ADO.NET, by default each SQL statement starts its own transaction, which auto-commits unless an exception is thrown. If an exception is thrown, the transaction in progress will roll back.

To create a transaction that spans a sequence of SQL statements, the IDbTransaction class is provided. The IDbTransaction XE "IDbTransaction"  interface is fully described in the ADO.NET documentation. To get an IDbTransaction, call the BeginTransaction method of IDbConnection, e.g.


IDbTransaction tr = db.BeginTransaction();

There are two methods of interest, which end the transaction:

	Property or Method signature
	Explanation

	void Commit XE "Commit" ()
	Force write the transaction’s changes to the database

	void Rollback XE "Rollback" ()
	Discard the transaction’s changes


ADO.NET allows a connection to attach to a running transaction. This is not specified in SQL2003, and not implemented in Pyrrho, primarily because the feature would defeat transaction isolation, but also because the effect of a subsequent Commit in any of the participating connections is non-deterministic, and publishing such handles defeats the concept of connection.
6.8 External procedures

Pyrrho supports external procedures, functions and methods written in any .NET programming language. In such cases the routine bodies are declared EXTERNAL in the database, and the implementations need to be provided in the application and be declared public, but do not otherwise need to be notified to Pyrrho. Methods need to be implemented in the appropriately-named class; procedures can be implemented anywhere. Databases with external procedures cannot be used with the standard Pyrrho utilities described in section 4 such as the PyrrhoCmd utility, because these utilities will not be able to supply the external procedures.

For example, the change-logging behaviour in the sample in section 5.8 could be handled using an external procedure:

create table test1(id int primary key,val char)

create procedure log(g char,h char) external
create trigger loginsert after insert on test1 referencing new row as a for each row log('inserted',a.val)

create trigger logupdate before update on test1 referencing old row as a new row as b for each row log(a.val,b.val)

create trigger logdelete before delete on test1 referencing old row as a for each row log('deleted',a.val)
insert into test1 values(1,'First'),(2,'Second')

update test1 set val='New One' where id=1

delete from test1 where id=2

The log procedure in the application can be implemented in a C# application as follows (from section 6.6, we remember that SQL Char corresponds to System.String, and SQL identifiers are capitalised by default):

public static void LOG(string a, string b)

{


System.Console.WriteLine(a+": "+b);

}
If a database attempts to execute a routine not supported in the application, a run-time exception occurs in the client application (not the server).

Basic types correspond as described in section 6.6. User-defined types should correspond to a similarly named type in the application, which has a public constructor receiving all the public fields (and no other public constructor with the same number of parameters). For external instance or overriding methods, ‘this’ is an updatable copy of an object in the database.

It is important to remember that the data accessed by external procedures may not be consistent or durable since it comes from uncommitted transactions. 

Pyrrho provides facilities to enable external routines provided by one connection to be used from another. Two steps are necessary for this: (a) the connection providing the routines must hold the HANDLER privilege for the routine, which is not provided by default; (b) the application providing the routines must call the Callbacks() method on a connection to create a handler thread for this service. 

For example, an application providing the above external procedure would call

T = conn.Callbacks("log(g char,h char)");
6.9 The Connection String Designer

The PyrrhoLink.dll includes three controls that can be placed in the Toolbox of Visual Studio and the Express editions. Two are for Windows Forms and the other is for Web Forms (ASP.NET 2.0).

6.9.1 Accessing the Pyrrho designers

The following steps will add PyrrhoLink’s controls to the Toolbox in Visual C# Express Edition. The procedure for other tools in the Visual Studio family is similar: 

1. Open or create a project that uses the designer, such as a Windows Application.

2. Open or create a Windows Form component, in design view.

3. If the Toolbox is not visible, from the View menu select Toolbox. Click on the pushpin in its title bar to keep it visible.

4. Click on the Data section of the Toolbox (in the hope that the controls might get placed there).

5. From the Tools menu, select Choose Toolbox items..  

6. In the dialog box that pops up, select Browse.. and browse to find PyrrhoLink.dll . Select this.

7. PyrrhoConnect and PyrrhoDataAdapter will be added to the list of controls in the dialog box. Click on OK to add them to the Toolbox.

8. You can now move them to your preferred position in the Toolbox.

[image: image31.png][l Pyrrho Connection String,

Server | Database | Authorty | Locale

Add

Databasels) to connect o

Move Up.
Mave Down

Remave




Click the PyrrhoConnect icon in the Toolbox, and drag it onto the Windows Form. It will be drawn at the foot of the designer, with a name such as pyrrhoConnect1  If the Properties window is not visible, right-click and select Properties.

6.9.2 Building the Connection String

The most important property of PyrrhoConnect and PyrrhoDataSource is the ConnectionString, which was described in section 6.4. If you click the mouse in the value field of the ConnectionString property, you will see an ellipsis button … . Click this, and the Pyrrho Conntion String dialogue will appear:

[image: image32.png][l Pyrrho Connection String,

Server | Database | Authonty | Locale

Connestionfor

© User | TORE\Malcolm
O Public

O Someone else.

Authorty:

Squash




This has tabs for constructing the different parts of the connection string. The first step (“Server”) allows you to specify a host and port: the default values are supplied for you. The Test Connection button verifies that a Pyrrho server is actually running at the specified host and port.

The next tab is for selecting one or more databases on the server. The combobox allows you to select one of the databases in the server folder. Click on Add to add it to the connection string. Connecting to a single database is normally sufficient. For multi-database connections, see section 2.8. If you have more than one database selected, the ordering is important, and can be modified with the Move Up and Move Down buttons. 
[image: image33.png][l Pyrrho Connection String,

Database | Autharly | Lacale

locakhost

5433




On the Enterprise edition it is possible to give the pathname of a database file: however for ASP.NET it is generally easier to construct this programmatically, e.g. in the Page_load event, using Server.MapPath(). 

The third tab is for selecting the authority to use. In the simplest cases the default authority, identified by the name of the database, can be used. The combobox allows you to select from the authorities available to the selected user. By default this is the current user (you cannot pretend to be someone else). Publicly-available authorities are shown in all cases, in addition to permissions particular to the selected user.

The fourth tab is for selecting the locale. For most purposes you should use the default .NET UI locale. The locale identifier such as fr or zh-CHS can be entered in the textbox.

When you are satisfied with your choices, click OK to dismiss the dialogue and store your connection string.

6.10 PyrrhoDataAdapter

PyrrhoLink.dll also contains a DataAdapter component tailored for Pyrrho. The current implementation is guided by the desirability of short transactions rather than batched updates, and the DataAdapter supports a DataSet containing just one table.

The control has two properties: ConnectionString and SelectString. The Adapter automatically performs updates, deletes and insertions provided that the resulting DataTable is updatable.

PyrrhoDataAdapter works well with the data-aware Windows Forms controls. Here is a step-by-step guide to using it with a DataGridView, given in C#, but similar solutions are possible with Visual Basic or other .NET languages.

1. First follow the steps in chapter 5 to create a test database with at least one table that contains data and you can use for testing.

2. Using Visual Studio or Visual C# Express Edition, create a new Windows Application project. Normally the Form1.cs source file opens in design view: rearrange the view or Open it so that it is on the design surface.

3. Follow the steps in 6.9.1 to add the designers to the Toolbox.

4. Select PyrrhoDataAdapter in the Toolbox and drag it onto the Windows Form. An instance pyrrhoDataAdapter1 appears at the foot of the design surface.

5. View Properties if necessary to make the Properties of the pyrrhoDataAdapter1 visible. They include a ConnectionString and a SelectString.

6. Follow the steps in 6.9.2 to connect to your test database. (In simple cases it may be sufficient to simply enter Files=Temp or similar as the ConnectionString property.)

7. Give the SelectString as table members or similar to select data from a table in your test database.

8. Add a DataGridView to the form. In the popup dialog box, accept the value None supplied for the DataSource.

9. Double-click the background of the form, to edit the Form1_Load event handler:

private void Form1_Load(object sender, EventArgs e)

{

   try

   {

       pyrrhoDataAdapter1.Fill(dataGridView1);

    }

    catch (Exception ex)

    {

       MessageBox.Show(ex.Message);

    }

 }

9. Test your sample. Ensure the server is running and run your windows application. You should be able to examine, modify, add and delete records.
6.11 ASP.NET and PyrrhoDataSource

This is a Web Server control for use with Web Forms. Like the above controls it is supplied in PyrrhoLink.dll, and can be added to the Toolbox of Visual Web Developer.

In this section we focus on simple solutions to common problems, using code for a very basic page for illustrative purposes. There are some preliminary steps to ensure that ASP.NET has the necessary permissions to access your databases, and these are covered in detail in this section.

A great advantage of using the Pyrrho Enterprise edition for ASP.NET is that it allows pathnames for databases. If different web applications use different folders for the database, the names of databases will not conflict. (This is very useful in the academic context.) If one of the other editions of Pyrrho is in use, the databases will need to have unique names, as all will be in the server’s folder.

6.11.1 First steps

The first step in any ASP.NET project is to consider what information should be persisted in a database.

This consideration should result in the building of a basic database that can be used during testing. When the application is deployed, the database can be moved to its final location, usually on a server close to the enterprise web server. 

With ASP.NET there are several options for what account is in operation. Usually, ASP.NET has its own account with limited permissions. Generally, enterprise database servers do not allow database creation, especially not by limited accounts.

So for best results, create your web site database with a local (e.g. Personal edition) Pyrrho DBMS server, and make sure that the ASP.NET account has the necessary permissions to access and modify the database objects. 

1. We assume that you or your system administrator has set up your ASP.NET-enabled web application folder, in the deployment context, and that a Pyrrho server is running on that machine. In the following sections, the web application url should be inserted anywhere you see http://webURL .
2. Create a bin folder in the web application folder, and copy PyrrhoLink.dll and Dbr.dll into it. If you are using Pyrrho Enterprise edition, this bin folder will also contain the database. 

3. There are several options that can be set in web.config . A good starting point in to ensure the following web.config file is placed in the web application folder.

<configuration>

    <system.web>

        <customErrors mode="Off"/>

    </system.web>

</configuration>
6.11.2 Checking the ASP.NET account and folder

If you do not know how your ASP.NET has been configured, it is a good idea to use a simple test first. If you already know the account, or you are sure this will not be a problem, you can skip this section.

1. Ensure that PyrrhoSvr is running on your local machine, and that there is no database called Test.pfl in the server folder. 

2. (If the web server is on a different machine, and you are not using Pyrrho Enterprise edition) Check the web server folder: if the name Test is already in use, use a different name for the database in this section.

3. In a command prompt, change to a folder containing Pyrrho Client tools: PyrrhoCmd.exe (and PyrrhoLink.dll) and do the following steps:

> PyrrhoCmd Test

SQL> create table a(a1 int primary key,a2 char)

SQL> ^C

4. (If the web server machine is not the local machine.) Stop the Pyrrho server on the local machine.  Copy the Test.pfl file to the bin folder of your application (if using Pyrrho Enterprise), or the Pyrrho server (otherwise).

5. Use Notepad to build the following test.aspx file: 

<%@ Page Language="C#" Debug="true" %>

<%@ Import Namespace="Pyrrho" %>

<script runat="server">

void Page_Load(object sender,EventArgs e)

{

  new PyrrhoConnect("Files=Test").Act("insert into a(a2) values ('Testing')");

}

</script>

<html>

<body>

Hello from asp.net!

</body>

</html>

NOTE: If you are using Pyrrho Enterprise, write the connection string here as "Files="+Server.MapPath("bin\\Test")) instead of "Files=Test". 

Save test.aspx into your web application folder (make sure it is test.aspx and not test.aspx.txt).

6. Point your web browser and give the address http://WebURL/test.aspx .

If the page loads correctly, and you see “Hello from asp.net”, you do not need to take any further action. However, you should expect to see something like this:

[image: image29.png]2 invalid user, NT, AUTHORITYANETWORK SERVICE for, database c:\inetpubWwwwrootibin\Test - Microsoft Interne..

Ele Edt View Favortes Toos Help

Qs - © - 1 B ] D Forowns @

agdress ] tppocahosttest.aspe

Server Error in /' Application.

invalid user NT AUTHORITY\NETWORK SERVICE for database
c:\inetpub\wwwroot\bin\Test

Description: &n unhandied exceplon occurred during the execution of the currert web reguest. Pleass review the stack trace for more information
shaut the error and where t ariginated in he code.

Exception Details: Pyrtho DatakaseErrar: invalid user NT AUTHORITYINETWORK SERVICE for detebase c-inetpubtwwwroatiinTest

Source Error:

< |

@ oo & el et




7. If you get an ASP.NET diagnostics page, look to see the username and database name reported. In the system from which the above image was taken the user name was “NT AUTHORITY\NETWORK SERVICE”. The name in this message is the one that should be given all privileges on database objects in the web application’s database, in the next section. If you are using Pyrrho Enterprise, you will also see the pathname of the database (as set up by Server.MapPath()), which you may also need later.

6.11.3 Setting up your application database

In this section we continue to set up the very simple Squash ASP.NET page. You can use similar instructions for other web applications.

1. Ensure that PyrrhoSvr is running on your local machine, and that there is no database called Squash.pfl in the server folder. 

2. (If the web server is on a different machine, and you are not using Pyrrho Enterprise edition) Check the web server folder: if the name Squash is already in use, use a different name for the database in this and subsequent sections.

3. In a command prompt, change to a folder containing Pyrrho Client tools: PyrrhoCmd.exe (and PyrrhoLink.dll) and do the following steps:

> PyrrhoCmd Squash
SQL> create table members(id int primary key, firstname char, surname char)

SQL> insert into members values(1,'Joe','Soap'),(2,'Mary','Smith')

SQL> grant all privileges on members to "NT AUTHORITY\NETWORK SERVICE"

SQL> ^C

Replace the user identity in italics above by the username from step 7 in 6.10.2. If you need more tables they should be built at this point, and the grant statement is required for all database objects involved in the application.
4. (If the web server is not on the local machine.) Stop the Pyrrho server on the local machine. Copy the Squash.pfl file to the bin folder of your application (if using Pyrrho Enterprise), or to the Pyrrho server folder on the machine running the web server (otherwise).

6.11.4 Writing your application pages

[image: image34.png]B website1 - Visual Web Developer 2005 Express Edition

Edt vew

webste

Buld  Debug

@B

Format

Layout

Tools

=N

window

Community  tielp

B 7 U

152) PlaceHolder
0 view
5] substiution
G Locaize
= pata
N Pointer
A aridvn
&1 Datalist
7 Detaibvinw
] Formvew
= Repester
SuDatssource
[p AccessDatsSource.
[ objectDstasource
I, #batssource
[, SteMapbatasource
Validation
Navigation
Login
Webparts
HML
= General

StartPage  Default.asp |

Saltion Explarer - Ex

X Forter

“byrrhoDataSource - PyrhaDetaSource1

G PyheDstazoce

3 Design

@ Source

<pyrrhospyrhodatasource b

B EREEB®
P Ctemp\websiter\
5 aoppata
Sabn
Oefaukssp
3 Sauash,asp.exclude
5 web.confg

EJsclion Explrer [ZDatsbase £l

PyrthoDataSource1 Pyirho Pyihod -
B EIFAS!
& Behavior
Enablevienstate True
& pata
(Expressions)

Selectsal
B misc
() PyrrhoDatasource |
Tabletiame
Types

Connectionstring

Ready




You can use Notepad for writing ASP.NET pages, FrontPage, or Visual Studio to develop ASP.NET pages. For the time being, Visual Web Developer Express Edition is available as a free download from Microsoft, so we assume its use here.

The purpose of these notes is to show how PyrrhoDataSource can be used with the various data-aware controls. Let us place a DataSource and several data-aware server controls on a page:

1. In Visual Web Developer Express Edition, create a new web site. The default page opens in source view: switch to design view.

2. Check the Toolbox contains PyrrhoDataSource. If not, follow the procedure in section 6.9.1.

3. Add a PyrrhoDataSource to the page by dragging the icon from the toolbox onto the page.

[image: image35.png]DropDownlist Tasks
Choase Data Saurce,
Edit Ttems

[ Ensble AutoPostBack



6. Note the ConnectionString and SelectSql properties in the Property viewer. Enter these as 

	ConnectionString
	Files=Squash

	SelectSql
	table members


If you are using a pathname to access your database, you can use the pathname you noted in 6.10.1, or set it programmatically in Page_Load.

[image: image36.png]Data Source Configuration Wizard

Choose a Data Source

Select a data source;

PyrhaDatasaurcel v

Select a data fel to display in the DropDowList:

SLRNAVE v

Select a data feld For the value of the DrapDownList

D v




7. Drag a DropDownList, onto the design surface and click on Choose Data Source..  Select your PyrrhoDataSource from the drop-down list. Type in some fields: SURNAME for the text field and ID for the value field will do for now.

8. Similarly add a GridView and a DetailsView onto the page. For each, use their (slightly simpler) mechanism to use the data. 
[image: image37.png]GridView Tasks

Auta Format

Choose Data Source: | (Hone)

Edit Columns,
dd New Column,
Ed Templates




9. Now switch to Source view: examine the two elements

   <asp:GridView ID="GridView1" runat="server" DataSourceID="PyrrhoDataSource1" >

   </asp:GridView>

   <asp:DetailsView ID="DetailsView1" runat="server" DataSourceID="PyrrhoDataSource1" Height="50px" Width="125px">

</asp:DetailsView>

[image: image38.png]2 Untitled Page - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qback ~ O (1] @ G S seach JrFavortes €

adiress | €] httpsfiocahhost:2051 wiebSite1 Defaut.a v | [ G0 Links

ID FIRSTNAME SURNAME
Edit Delete Select 1 Toe Soap

Edit Delete Select? Tane Smith

Edit Delete Select3 Kevin Sharpe

D 3
FIRSTNAME Kevin
SURNAME  Sharpe
Edit Delete New
123

CreT



Modify them to allow editing and paging:

 <asp:GridView ID="GridView1" runat="server" AutoGenerateEditButton=True AutoGenerateDeleteButton=True AutoGenerateSelectButton=True DataSourceID="PyrrhoDataSource1">

 </asp:GridView>

        <asp:DetailsView ID="DetailsView1" runat="server" DataSourceID="PyrrhoDataSource1"

            Height="50px" Width="125px" AutoGenerateDeleteButton=true AutoGenerateEditButton=true AutoGenerateInsertButton=true AllowPaging=true >

        </asp:DetailsView>

10. Now try out your masterpiece. Check that you are able to modify the table. Note that it is okay to leave the ID field blank for a new entry (you can fill it in if you want to), and database errors are handled using an event in the PyrrhoDataSource.

Obviously this is just the beginning. By using a more interesting select statement you can extract data in various forms, possibly at the cost of being able to edit the fields; and the GridView and DetailsView have many features to provide a professional look and feel.

6.11.5 Using Blobs with ASP.NET

For best results a blob needs to have a known MIME type, known to the client’s browser. For example, suppose we have a blob that is an Excel spreadsheet, and we know the client is able to display an Excel spreadsheet, the appropriate MIME type is "application/vnd.ms-excel". If the blob has just been retrieved in an IDataReader as rdr[0], the following code will return it from ASP.NET into the client’s browser (in place of the current page):

            Response.ContentType = the MIME type;

            Response.Clear();

            Response.BufferOutput = true;

            byte[] bytes = (byte[])rdr[0];
            Response.OutputStream.Write(bytes, 0, bytes.Length);

            Response.Flush();

            Response.Close();

Code like this will work for any blob type.
6.11.6 Database error handling

PyrrhoDataSource exposes two string properties called DBErrorMessage and SQLSTATE. It is a good idea to have a Label control to receive at least the DBErrorMessage, and the best time to collect the value is with the PreRender event:

[image: image39.png]2 Untitled Page - Microsoft Internet Explorer

Bl Edt Uew Favortes Took Help
Qo - © - R @ | Lsewch Hrravones @ | (3 %

Adress | @) httpsfflocalhosti2051 jWebsite1 Defaul. aspx v Be

Links

ID FIRSTNAME SURNAME
Edi1 Toe Soap

Edit2 Kevin Sharpe
Edit6 Tane Smith

“This record cannot be updated: duplicate key MEMBERS (1)

&0 Giocarirae:




<script runat="server">

void Page_PreRender(object sender, EventArgs e)

{


MyErrorLabel.Text = PyrrhoDataSource1.DBErrorMessage;

}

</script>

…

<asp:Label ID="MyErrorLabel" runat="server" />

6.11.7 Detaching the Database

With a personal web server, it is a light matter to restart the Pyrrho server, in order to detach a running database. Once the database file is no longer in use by the Pyrrho server, it can be deleted or replaced.

For a Pyrrho enterprise server, restarting the server may take valuable time, if large databases are preloaded. The function DetachDatabase has been provided as an alternative: it allows a single named database to be detached while the server continues to work with others. 

DetachDatabase can be used for non-preloaded databases, and is particularly useful in the circumstances envisaged in this section, to make structural modifications to a web application database. DetachDatabase does not destroy the database, but the server will not honour any request to re-establish a connection to the detached database for 100 seconds. This is intended to allow time for the administrator to move or replace the database.

If you still have a note of the server’s view of the web application database location (from step 7 of 6.10.2), you can program this in a little Console application:

using Pyrrho;

class Detach {


public static void Main(string[] args)


{



string pathname = "c:\\inetpub\\wwwroot\\bin\\Squash";



PyrrhoConnect c = new PyrrhoConnect("Files="+pathname);
c.Open();


c.DetachDatabase(pathname);

}

}

Alternatively, use ASP.NET. Place the following code in detach.aspx in your web application folder:

<%@ Page Language=”C#” %>

<%@ Import Namespace=”Pyrrho” %>

<script runat=server>

void Page_Load(object sender, EventArgs e)

{


String pathname = Server.MapPath(“bin\\Squash”);


PyrrhoConnect c = new PyrrhoConnect(“Files=”+pathname);

c.Open();

c.DetachDatabase(pathname);

}

</script>

<html>

<body>

Squash is now detached

</body>

</html>

and run it by pointing your browser at http://WebURL/detach.aspx.

6.12 Using PHP

There is an extra class ScriptConnect in PyrrhoLink.dll which is very useful for use with the scripting language PHP. (This class is added as from version 0.4.1 of Pyrrho.)

PHP can be used for building web applications, and then the same considerations as in the last section apply for the user identity of the web server and ownership of the databases. Unfortunately there does not yet seem to be a good way for PHP to work with Mono as a web server extension.

6.12.1 Enabling PHP support under Windows

To enable PHP support for Pyrrho under Windows, an administrator needs to issue the following two commands from the folder that contains PyrrhoLink.dll:

gacutil –i PyrrhoLink.dll

regasm PyrrhoLink.dll –tlb:PyrrhoLink.tlb

You also need to ensure that com.allow_dcom is set to true in c:\Windows\Php.ini. 

[COM]

; path to a file containing GUIDs, IIDs or filenames of files with TypeLibs

;com.typelib_file =

; allow Distributed-COM calls

com.allow_dcom = true

6.12.2 Connecting to a Pyrrho database

The following steps can be used to access Pyrrho databases from PHP:

To create a connection to a Pyrrho database:

$conn = new COM(“Pyrrho.ScriptConnect”);

$conn->ConnectionString = …;

$conn->Open();

6.12.3 Retrieving data from the database

Once a connection is open as above, and SQL statement can be sent to the database as follows

$rdr = $conn->Execute(…);

The result returned will be a ScriptReader in the case that the SQL statement returns data.

Then 

$row = $rdr->Read();

can be used to return successive rows of the data as variant arrays. If there are no more rows then the value returned is ‑1 , which can be tested using is_int($row) :

$row = $rdr->Read();

while(!is_int($row))

{


print($row[0].': '.$row[1].'<br/>');


$row = $rdr->Read();

}

$rdr->Close(); should be called when the reader is no longer required.

$conn->Execute(…); can also be used for other types of SQL statements.
6.13 PyrrhoDbClient

In addition to the classes described above, PyrrhoLink.dll also provides a PyrrhoDbClient class, similar to WebClient. This provides a simple interface to retrieving resources identified by Pyrrho IRIs.

All of the functions described in the System.Net.WebClient interface are available. DownloadFile can be used for blobs. 

Example:

PyrrhoDbClient client = new PyrrhoDbClient();

byte[] data =  client.DownloadData("pyrrhodb://example.com/MyDB/3456/789");

Upload members of this class can be used to update cells in database records. Such updates are treated as autotransactions and are handled by the Pyrrho database engine in the same way as a corresponding SQL statement of the form “update table set column=something where position=3456”. This means that the implied atomic update to the database must satisfy all security and constraint requirements of the database concerned. In this case position 789 would be the defining position for the column. Recall that POSITION is a reserved word in Pyrrho and is equivalent to selecting a record by means of a particular value of a primary key.

SPARQL resources can also be obtained using this protocol. See sections 5.10 and 3.6 .
6.14 The Java Persistence Library

The Java Persistence class library org.pyrrhodb.* is supplied with the Open Source Edition of Pyrrho, and conforms to the version of the Java language used in the JDK 1.6.0, and the version of the Java Persistence Library specified in the Java EE 5 SDK. The classes that are included are listed below together with any divergences from the Java EE 5 specifications.

Java Persistence has a query language built in, which is described briefly in section 6.14.1. However, it is quite common for Java Persistence applications to include no explicit query language statements. This is because entities (persistent Java objects) can be programmed in a more natural way, and individual entities can be obtained from the EntityManager by their primary key, updated if required and synchronised with the database.

6.14.1 The Java Persistence Query Language

Although at first sight Jpql looks a bit like SQL, the apparent familiarity of a construct such as “SELECT a FROM Customer a” is misleading. It is not SQL2003 syntax, and, more importantly, will return a list of objects as they are defined in the Entity class Customer in the client application, rather than a list of records from a table called Customer in the database. In the simplest cases they may well correspond closely, but an entity object may well include many-valued associations, and collect data from several database tables. 

On the other hand, the relationship of entities with base tables is very close: all the joins required in order to collect entity data are simple joins of base tables, so that programming Jpql directly in the Pyrrho DBMS makes retrieval of entity data very efficient.

The relationship between the Java objects and the database tables are given declaratively in the Java client application, using Annotations, and by default an entity class will correspond to a database table. The annotations are listed below in section 6.14.2. There is no mechanism for ensuring that different applications construct compatible Entities, beyond the sharing of a persistence unit (or database). For the time being the metadata in the application is regarded as additional to the metadata held in the database, in the form of constraints, domain types etc. An exception will be raised if (a) the metadata supplied is incompatible with the database, preventing execution or (b) the actions requested conflict with either set of metadata. Importantly, the application metadata supplied to the database is regarded as connection-local: the Entity Manager maintains a connection to the Pyrrho DBMS to minimise metadata traffic. This is another reason for minimising the number of Entity Managers in an application.

An example in section 6.14.3 below shows simple use of annotations, but this booklet is not the place for a full discussion of the issues. The interested reader is referred to Sun’s Java technology website http://java.sun.com  .

As far as is known the implementation of the Java Persistence Query Language in Open Source Pyrrho conforms to the Java EE specification, with the following exceptions:

· Normally, the use of SQL2003 reserved words is merely discouraged: with this version they must be avoided completely, or enclosed in SQL2003-style double quotes.

· Entities do not need to be Serializable. They need to be declared public, to have a public constructor with no parameters (the default constructor is fine), and all the annotated fields and methods need to be declared public.

· Additional SQL2003 functions, as supported by Pyrrho, are available.

Some other divergences from the specification are noted in the next section.
It is best to omit redundant details such as column properties especially where there is a danger that they might be different from the details in the database.  For example, if the primary key has just one column, there is no need to give its name in the Column annotation. If there is conflict Pyrrho will attempt to complete the application request and only flag an exception as a last resort.

When you use the Pyrrho utilities such as PyrrhoCmd to prepare tables for use with Java, remember that SQL2003 conventions apply for these utilities, and identifiers will all be converted to upper case unless they are enclosed in double quotes.

6.14.2 Pyrrho’s Java Persistence Library

Java clients of Pyrrho are assumed to use application-managed persistence, so for example, PersistenceUnit is used rather than PersistenceContext. The PersistenceUnit annotation class has been enhanced slightly to allow a set of connection string properties to be specified for the application (such as Host, Port, User etc). The following classes are available for use by application developers, and conform precisely to Java EE5 specifications except as noted. Nearly all annotation details are optional, and those that are required are shown in bold.

	Type
	Name
	Details
	Type

	Enum
	CascadeType
	ALL, MERGE, PERSIST, REFRESH, REMOVE

	Annotation XE "Annotation" 
	Column XE "Column" 
	columnDefinition
	String sql

	
	
	Insertable
	boolean

	
	
	length
	int

	
	
	name
	String

	
	
	nullable
	boolean

	
	
	precision
	int

	
	
	scale
	int

	
	
	table
	String

	
	
	unique
	boolean

	
	
	updatable
	boolean

	Annotation
	Entity XE "Entity" 
	name
	String

	Exception
	EntityExistsException XE "EntityExistsException" 
	
	

	Class
	EntityManager XE "EntityManager" 
	see Java API documentation
	see note 1

	Class
	EntityManagerFactory XE "EntityManagerFactory" 
	see Java API documentation
	see notes 1,2

	Exception
	EntityNotFoundException XE "EntityNotFoundException" 
	
	

	Class
	EntityTransaction XE "EntityTransaction" 
	see Java API documentation
	see note 1

	Enum
	FetchType XE "FetchType" 
	EAGER, LAZY
	

	Enum
	FlushModeType
	AUTO, COMMIT
	

	Annotation
	Id XE "Id" 
	
	

	Annotation
	IdClass
	
	Class

	Annotation
	JoinColumn XE "JoinColumn" 
	columnDefinition
	String sql

	
	
	insertable
	boolean

	
	
	name
	String

	
	
	nullable
	boolean

	
	
	referencedColumnName
	String

	
	
	table
	String

	
	
	unique
	boolean

	
	
	updatable
	boolean

	Annotation
	JoinColumns XE "JoinColumns" 
	
	JoinColumn[]

	Annotation
	JoinTable XE "JoinTable" 
	catalog
	String

	
	
	inverseJoinColumns
	JoinColumn[]

	
	
	joinColumns
	JoinColumn[]

	
	
	name
	String

	
	
	schema
	String

	
	
	uniqueConstraints
	UniqueConstraint[]

	Annotation
	Lob XE "Lob" 
	
	

	Annotation
	ManyToMany XE "ManyToMany" 
	cascade
	CascadeType[]

	
	
	fetch
	FetchType

	
	
	mappedBy
	String

	
	
	targetEntity
	Class

	Annotation
	ManyToOne XE "ManyToOne" 
	cascade
	CascadeType[]

	
	
	fetch
	FetchType

	
	
	optional
	boolean

	
	
	targetEntity
	Class

	Exception
	NonUniqueResultException XE "NonUniqueResultException" 
	
	

	Exception
	NoResultException XE "NoResultException" 
	
	

	Annotation
	OneToMany XE "OneToMany" 
	cascade
	CascadeType[]

	
	
	fetch
	FetchType

	
	
	mappedBy
	String

	
	
	targetEntity
	Class

	Annotation
	OneToOne XE "OneToOne" 
	cascade
	CascadeType[]

	
	
	fetch
	FetchType

	
	
	mappedBy
	String

	
	
	optional
	boolean

	
	
	targetEntity
	Class

	Exception
	OptimisticLockException XE "OptimisticLockException" 
	
	

	Annotation
	OrderBy XE "OrderBy" 
	
	String orderby_list

	Exception
	PersistenceException XE "PersistenceException" 
	
	

	Annotation
	PersistenceProperty XE "PersistenceProperty" 
	name
	String

	
	
	value
	String

	Annotation
	PersistenceUnit XE "PersistenceUnit" 
	name
	String

	
	
	properties see note 3
	PersistenceProperty[]

	
	
	unitName
	String

	Annotation
	PrimaryKeyJoinColumn XE "PrimaryKeyJoinColumn" 
	columnDefinition
	String sql

	
	
	name
	String

	
	
	referencedColumnName
	String

	Annotation
	PrimaryKeyJoinColumns XE "PrimaryKeyJoinColumns" 
	
	PrimaryKeyJoinColumn[]

	Class
	Query XE "Query" 
	see Java API documentation
	see note 1

	Annotation
	SecondaryTable XE "SecondaryTable" 
	catalog
	String

	
	
	name
	String

	
	
	pkJoinColumns
	PrimaryKeyJoinColumn[]

	
	
	schema
	String

	
	
	uniqueConstraints
	UniqueConstraint[]

	Annotation
	SecondaryTables XE "SecondaryTables" 
	
	SecondaryTable[]

	Annotation
	Table XE "Table" 
	catalog
	String

	
	
	name
	String

	
	
	schema
	String

	
	
	uniqueConstraints
	UniqueConstraint[]

	Annotation
	Temporal XE "Temporal" 
	see note 4
	TemporalType

	Enum
	TemporalType XE "TemporalType" 
	DATE, TIME, TIMESTAMP
	

	Annotation
	UniqueConstraint XE "UniqueConstraint" 
	columnNames
	String[]


Notes: 1. The four Classes in this list are defined as interfaces in the specification. There is no effect on application coding.

2. The methods of EntityManagerFactory are static in Pyrrho, which is a departure from the specification, unlikely to be noticed in practice, as the application coding need not be different.

3. The properties attribute of PersistenceUnit is added to the specification. 

4.  Temporal has its Java meaning here, and is not related to the notion of temporal table discussed elsewhere in this document.
6.14.3 A Simple Java Persistence Example

For example, consider the following simple pair of classes:

import org.pyrrhodb.*;

@Entity

public class Member {

   @Id @Column public int id;

   @Column public String surname;

}
import org.pyrrhodb.*;

public class NewMain {

    @PersistenceUnit(name="Squash",

        properties={



@PersistenceProperty(name="User", 






value="Octopus\\Malcolm")})

    static EntityManagerFactory emf;

    public static void main(String[] args) {

         EntityManager em = emf.createEntityManager();

         Member joe = em.find(Member.class,67);

         System.out.println(joe.surname);

    }

}

In the above comments, it was noted that the methods of EntityManagerFactory are static. In the above code, emf is declared static for a different reason: because it is called from main, which is static.
6.14.4 The BNF grammar for Java Persistence Query Language

This is reproduced here from the Java EE 5 tutorial, for convenience.

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] 

[groupby_clause][having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::=

  FROM identification_variable_declaration

    {, {identification_variable_declaration |

      collection_member_declaration}}*

identification_variable_declaration ::=

    range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS]

    identification_variable

join ::= join_spec join_association_path_expression [AS]

    identification_variable

fetch_join ::= join_specFETCH join_association_path_expression

association_path_expression ::=

    collection_valued_path_expression |

    single_valued_association_path_expression

join_spec::= [LEFT [OUTER] |INNER] JOIN

join_association_path_expression ::=

    join_collection_valued_path_expression |

    join_single_valued_association_path_expression

join_collection_valued_path_expression::=

  identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=

    identification_variable.single_valued_association_field

collection_member_declaration ::=

    IN (collection_valued_path_expression) [AS]

    identification_variable

single_valued_path_expression ::=

    state_field_path_expression |

    single_valued_association_path_expression

state_field_path_expression ::=

  {identification_variable |

  single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=

  identification_variable.{single_valued_association_field.}*

  single_valued_association_field

collection_valued_path_expression ::=

  identification_variable.{single_valued_association_field.}*

  collection_valued_association_field

state_field ::=

  {embedded_class_state_field.}*simple_state_field

update_clause ::=UPDATE abstract_schema_name [[AS]

  identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field |

  single_valued_association_field} = new_value

new_value ::= 

  simple_arithmetic_expression |

  string_primary |

  datetime_primary |

  boolean_primary |

  enum_primary simple_entity_expression |

  NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS]

  identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {,

  select_expression}*

select_expression ::=

  single_valued_path_expression |

  aggregate_expression |

  identification_variable |

  OBJECT(identification_variable) |

  constructor_expression

constructor_expression ::=

  NEW constructor_name(constructor_item {,

  constructor_item}*)

constructor_item ::= single_valued_path_expression |

  aggregate_expression

aggregate_expression ::=

  {AVG |MAX |MIN |SUM} ([DISTINCT]

    state_field_path_expression) |

  COUNT ([DISTINCT] identification_variable |

    state_field_path_expression |

    single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression [ASC |DESC]

subquery ::= simple_select_clause subquery_from_clause

  [where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::=

  FROM subselect_identification_variable_declaration

    {, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=

  identification_variable_declaration |

  association_path_expression [AS] identification_variable |

  collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT]

  simple_select_expression

simple_select_expression::=

  single_valued_path_expression |

  aggregate_expression |

  identification_variable

conditional_expression ::= conditional_term |

  conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND

  conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(

  conditional_expression)

simple_cond_expression ::=

  comparison_expression |

  between_expression |

  like_expression |

  in_expression |

  null_comparison_expression |

  empty_collection_comparison_expression |

  collection_member_expression |

  exists_expression

between_expression ::=

  arithmetic_expression [NOT] BETWEEN

    arithmetic_expressionAND arithmetic_expression |

  string_expression [NOT] BETWEEN string_expression AND

    string_expression |

  datetime_expression [NOT] BETWEEN

    datetime_expression AND datetime_expression

in_expression ::=

  state_field_path_expression [NOT] IN (in_item {, in_item}*

  | subquery)

in_item ::= literal | input_parameter

like_expression ::=

  string_expression [NOT] LIKE pattern_value [ESCAPE

    escape_character]

null_comparison_expression ::=

  {single_valued_path_expression | input_parameter} IS [NOT]

    NULL

empty_collection_comparison_expression ::=

  collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_expression

  [NOT] MEMBER [OF] collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= {ALL |ANY |SOME} (subquery)

comparison_expression ::=

  string_expression comparison_operator {string_expression |

  all_or_any_expression} |

  boolean_expression {= |<> } {boolean_expression |

  all_or_any_expression} |

  enum_expression {= |<> } {enum_expression |

  all_or_any_expression} |

  datetime_expression comparison_operator

    {datetime_expression | all_or_any_expression} |

  entity_expression {= |<> } {entity_expression |

  all_or_any_expression} |

  arithmetic_expression comparison_operator

    {arithmetic_expression | all_or_any_expression}

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |

  (subquery)

simple_arithmetic_expression ::=

  arithmetic_term | simple_arithmetic_expression {+ |- }

    arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }

  arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::=

  state_field_path_expression |

  numeric_literal |

  (simple_arithmetic_expression) |

  input_parameter |

  functions_returning_numerics |

  aggregate_expression

string_expression ::= string_primary | (subquery)

string_primary ::=

  state_field_path_expression |

  string_literal |

  input_parameter |

  functions_returning_strings |

  aggregate_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::=

  state_field_path_expression |

  input_parameter |

  functions_returning_datetime |

  aggregate_expression

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::=

  state_field_path_expression |

  boolean_literal |

  input_parameter 

enum_expression ::= enum_primary | (subquery)

enum_primary ::=

  state_field_path_expression |

  enum_literal |

  input_parameter

entity_expression ::=

  single_valued_association_path_expression |

    simple_entity_expression

simple_entity_expression ::=

  identification_variable |

  input_parameter

functions_returning_numerics::=

  LENGTH(string_primary) |

  LOCATE(string_primary, string_primary[,

    simple_arithmetic_expression]) |

  ABS(simple_arithmetic_expression) |

  SQRT(simple_arithmetic_expression) |

  MOD(simple_arithmetic_expression,

    simple_arithmetic_expression) |

  SIZE(collection_valued_path_expression)

functions_returning_datetime ::=

  CURRENT_DATE |

  CURRENT_TIME |

  CURRENT_TIMESTAMP

functions_returning_strings ::=

  CONCAT(string_primary, string_primary) |

  SUBSTRING(string_primary,

    simple_arithmetic_expression,

    simple_arithmetic_expression)|

  TRIM([[trim_specification] [trim_character] FROM]

    string_primary) |

  LOWER(string_primary) |

  UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH 

7. SQL Syntax for Pyrrho

The following details are provided here for convenience. The syntax shown is merely suggestive in relation to semantics. Full details may be found in SQL2003, but taking account of the compliance statements contained in section 7.2, not all of the details in SQL2003 are relevant to Pyrrho. In addition, AUTHORITY and ALTER .. TO are Pyrrho specific.

In this section capital letters indicate key words: those that are reserved words are shown in a sans-serif font. Tokens such as id, int, string are shown as all lower case words. Mixed case is used for grammar symbols defined in the following productions. The characters = . [ ] { } are part of the production syntax. Characters that appear in the input are enclosed in single quotes, thus ‘,’ . Where an identifier representing an object name is required, and the type of object is not obvious from the context, locutions such as Role_id are used.

There are three tokens: xmlname XE "xmlname" , uri XE "uri"  and xml XE "xml" , which are used in XPath below, which are extensions to SQL2003. These tokens are not enclosed in single or double quotes, but of course xml may contain string literals that are enclosed in quotes. xmlname represents a case-sensitive sequence of letters and digits, uri is a URI and xml represents any Xml content not including an exposed , ] or ).

Similarly, Rdf is an extension to SQL2003, and uses a special token type sparql, which is a SPARQL query. See section 5.10.1.

Finally, the use of CURRENT as a boolean expression, the window functions LAST and NEXT, and FOLD, INTERLEAVE and TEMPORAL are experimental suggested additions to SQL2003 for better support of temporal tables, see (Crowe 2006), and discussed in section 7.12. A semitemporal table has a primary key whose final component is a scalar field with a natural ordering. A temporal table T is such that T=FOLD(T) .

7.1 Statements

Sql XE "Sql"  = SqlStatement [‘;’] .

SqlStatement XE "SqlStatement"  = 
Rdf

|
Alter


|
BEGIN XE "BEGIN"  TRANSACTION

|
Call

|
COMMIT XE "COMMIT" 

|
CreateClause


|
CursorSpecification


|
DeleteSearched


|
DropClause


|
Grant


|
Insert


|
Rename


|
Revoke


|
ROLLBACK XE "ROLLBACK" 

|
SET AUTHORITY XE "AUTHORITY"  id


|
UpdateSearched .

The above statements can be issued at command level. You SELECT multiple rows from tables using the CursorSpecification. Inside procedures and functions there is a different set. (Note that “direct SQL” statements are in both lists.)

Statement XE "Statement"  = 
Assignment

|
Call

|
CaseStatement 
|
Close

|
CompoundStatement


|
BREAK XE "BREAK" 

|
Declaration


|
DeletePositioned


|
DeleteSearched


|
Fetch


|
ForStatement


|
IfStatement


|
Insert


|
ITERATE XE "ITERATE"  label


|
LEAVE XE "LEAVE"  label


|
LoopStatement

|
Open


|
Repeat


|
RETURN XE "RETURN"  Value


|
SelectSingle


|
SIGNAL XE "SIGNAL"  Condition_id

|
Sparql


|
UpdatePositioned


|
UpdateSearched


|
While .

7.2 Data Definition

Rdf XE "Rdf"  =
RDF [SAVE|RETRACT] [id]  ‘(‘ sparql ‘)’ .

This statement is added to SQL2003, and is discussed in section 5.10.

As is usual for a practical DBMS Pyrrho’s Alter statements are richer than SQL2003. 

Alter XE "Alter"  =

ALTER DOMAIN id AlterDomain { ‘,’ AlterDomain } 

|
ALTER FUNCTION id ‘(‘ Parameters ‘)’ RETURNS Type Statement

|
ALTER PROCEDURE id ‘(‘ Parameters ‘)’ Statement

|
ALTER Method Statement


|
ALTER TABLE id AlterTable { ‘,’ AlterTable } 

|
ALTER TRIGGER id Trigger

|
ALTER TYPE id AlterType { ‘,’ AlterType } .

See also Rename. Procedures, functions and methods are distinguished by their name and arity (number of parameters)
. 

Method XE "Method"  =  
MethodType METHOD id ‘(‘ Parameters ’)’ [RETURNS Type] [FOR id].

Parameters XE "Parameters"  = Parameter {‘,’ Parameter } .

Parameter XE "Parameter"  = id Type .

The specification of IN, OUT, INOUT and RESULT is not (yet) supported.

MethodType XE "MethodType"  = 
[ OVERRIDING XE "OVERRIDING"  | INSTANCE XE "INSTANCE"  | STATIC XE "STATIC"  | CONSTRUCTOR XE "CONSTRUCTOR"  ] .

The default method type is INSTANCE. All OVERRIDING methods are instance methods. 

AlterDomain XE "AlterDomain"  =
SET DEFAULT XE "DEFAULT"  Value 

|
DROP DEFAULT
|
TYPE Type

|
SET COLLATE XE "COLLATE"  id

|
DROP COLLATE
|
AlterCheck .

See also Rename.

AlterCheck XE "AlterCheck"  =
ADD CheckConstraint 

|
DROP CONSTRAINT XE "CONSTRAINT"  id .

CheckConstraint XE "CheckConstraint"  = [ CONSTRAINT id ] CHECK ‘(‘ [XMLOption] SearchCondition ‘)’ .

XMLOption XE "XMLOption"  = WITH XMLNAMESPACES XE "XMLNAMESPACES"  ‘(‘ XMLNDec {‘,’ XMLNDec } ‘)’ .

XMLNDec XE "XMLNDec"  = (string AS id) | (DEFAULT string) | (NO DEFAULT) .

AlterTable XE "AlterTable"  =
ADD ColumnDefinition


|
SET [COLUMN] id TO id


|
ALTER [COLUMN] id AlterColumn { ‘,’ AlterColumn }

|
DROP [COLUMN] id DropAction

|
(ADD|DROP) TableConstraintDef 

|
AlterCheck .

AlterColumn XE "AlterColumn"  = 
POSITION int 

|
(SET|DROP) ColumnConstraint 

|
AlterDomain

|
SET GENERATED ALWAYS AS ‘(‘ Value ‘)’ .

AlterType XE "AlterType"  = 
ADD ( Member | Method )


|
SET Member_id To id


|
DROP ( Member_id | Routine)


|
ALTER Member_id AlterMember { ‘,’ AlterMember } .

Use SET METHOD (see Rename above) to change the name of a method. Other details of a Method can be changed with the ALTER METHOD statement (see Alter above).

Member XE "Member"  = id Type [DEFAULT Value] Collate .

AlterMember XE "AlterMember"  =
TYPE Type


|
SET DEFAULT Value


|
DROP DEFAULT .

Create XE "Create"  =

CREATE AUTHORITY id Description_string

|
CREATE ROLE id

|
CREATE DOMAIN id [AS] DomainDefinition

|
CREATE FUNCTION id ‘(‘ Parameters ‘)’ RETURNS Type Body

|
CREATE PROCEDURE id ‘(‘ Parameters ‘)’ Body

|
CREATE Method Body


|
CREATE TABLE id ‘(‘ TableClause { ‘,’  TableClause } ‘)’ 


|
CREATE TRIGGER id (BEFORE|AFTER) Event ON id [ RefObj ] Trigger


|
CREATE TYPE id [UNDER id] AS Representation [ Method {‘,’ Method} ]


|
CREATE VIEW id AS QueryExpression .

A method body cannot be specified within the CREATE TYPE statement. This is done by CREATE METHOD once the type has been created.

Body XE "Body"  = (EXTERNAL XE "EXTERNAL"  [ NAME id ]) | Statement .

DomainDefinition XE "DomainDefinition"  = StandardType [DEFAULT Value] { CheckConstraint } Collate.

Representation XE "Representation"  = ‘(‘ Member {‘,’ Member }’)’ .

TableClause XE "TableClause"  =
ColumnDefinition | TableConstraint .

ColumnDefinition XE "ColumnDefinition"  = id Type [DEFAULT Value] {ColumnConstraint|CheckConstraint} Collate

|
id Type GENERATED ALWAYS AS ‘(‘Value‘)’.

The value expressions here can be any expression that makes sense in the context (e.g. generated columns can refer to data outside the current row). This is a change to SQL2003 behaviour. However, the default and generated behaviour applies only to subsequent records and updates.

ColumnConstraint XE "ColumnConstraint"   = [CONSTRAINT id ] ColumnConstraintDef .

ColumnConstraintDef  XE "ColumnConstraintDef" = 
NOT NULL
|
PRIMARY KEY 

|
REFERENCES id [ Cols ] { ReferentialAction }


|
UNIQUE .

TableConstraint XE "TableConstraint"   = [ CONSTRAINT id ] TableConstraintDef .

TableConstraintDef XE "TableConstraintDef" = UNIQUE Cols

|
PRIMARY KEY  Cols

|
FOREIGN KEY Cols REFERENCES Table_id [ Cols ] { ReferentialAction } .

Cols XE "Cols"  =

‘(‘id { ‘,’ id } ‘)’ | ‘(‘ POSITION ‘)’ .

The use of POSITION here is a change to SQL2003 behaviour, and refers to the defining position of a record. It should only be used if the referenced table does not have a primary key. 

ReferentialAction XE "ReferentialAction"  = ON (DELETE|UPDATE) (CASCADE| SET DEFAULT|RESTRICT) .

The default ReferentialAction is RESTRICT. Constraints are retrospective: they cannot be applied if existing data conflicts with them.

Event XE "Event"  = 
INSERT | DELETE | (UPDATE [ OF id { ‘,’ id } ] ) .

RefObj XE "RefObj"  = REFERENCING  { (OLD|NEW)[ROW|TABLE][AS] id } .

The default is ROW.

Trigger XE "Trigger"  = FOR EACH ROW [ TriggerCond ] (Call | (BEGIN ATOMIC Statements END)) .

TriggerCond XE "TriggerCond"  = WHEN ‘(‘ SearchCondition ‘)’ .

DropStatement XE "DropStatement" 

 XE "DropStatement"  = 
DROP DropObject DropAction .

DropObject XE "DropObject"  = 
AUTHORITY id


|
ROLE id


|
TRIGGER id


|
ObjectName .

DropAction XE "DropAction"  = | RESTRICT | CASCADE .

The default DropAction is RESTRICT.

Rename XE "Rename"  =SET ObjectName TO id .

7.3 Access Control

Grant XE "Grant"   = 

GRANT Privileges TO GranteeList [ WITH GRANT OPTION ] 

|
GRANT AUTHORITY id { ‘,’ id } TO GranteeList [ WITH GRANT OPTION ]

|
GRANT Role_id { ‘,’ Role_id } TO GranteeList [ WITH ADMIN OPTION ] .

See section 3.4.

Revoke XE "Revoke"  = 
REVOKE [GRANT OPTION FOR] Privileges FROM GranteeList


|
REVOKE [GRANT OPTION FOR] AUTHORITY id {‘,’ id } FROM GranteeList


|
REVOKE [ADMIN OPTION FOR] Role_id { ‘,’ Role_id } FROM GranteeList .

Revoke withdraws the specified privileges in a cascade, irrespective of the origin of any privileges held by the affected grantees: this is a change to SQL2003 behaviour. (See also section 7.13.)

Privileges XE "Privileges"  = ObjectPrivileges ON ObjectName .

ObjectName XE "ObjectName"  = 
TABLE id


|
DOMAIN id

|
TYPE id

|
Routine

|
VIEW id .

ObjectPrivileges XE "ObjectPrivileges"  = ALL PRIVILEGES | Action { ‘,’ Action } .

Action XE "Action"  = 
SELECT [ ‘(‘ id { ‘,’ id } ‘)’ ]


|
DELETE

|
HANDLER XE "HANDLER" 

|
INSERT  [ ‘(‘ id { ‘,’ id } ‘)’ ]


|
UPDATE  [ ‘(‘ id { ‘,’ id } ‘)’ ]


|
REFERENCES  [ ‘(‘ id { ‘,’ id } ‘)’ ]


|
USAGE


|
EXECUTE .

Handler is added here to specify a user who is allowed to provide an external procedure (see Callbacks).

GranteeList XE "GranteeList"  = PUBLIC | Grantee { ‘,’ Grantee } .

Grantee XE "Grantee"  = 
[USER] id


|
VIEW id


|
Routine


|
ROLE id

|
AUTHORITY id
. 
Routine XE "Routine"  = 
PROCEDURE id [‘(‘Type, {‘,’ Type }’)’]


|
FUNCTION id [‘(‘Type, {‘,’ Type }’)’]

|
[ MethodType ] METHOD id [‘(‘Type, {‘,’ Type }’)’] [FOR id ]

7.4 Type

Type XE "Type"  = 

StandardType | DefinedType | DomainName | CONDITION .

StandardType XE "StandardType"  = 
BooleanType | CharacterType | FloatType | IntegerType | LobType | NumericType | DateTimeType | IntervalType | XMLType .

BooleanType XE "BooleanType"  = 
BOOLEAN .

CharacterType XE "CharacterType"  = (([NATIONAL] CHARACTER) | CHAR | NCHAR | VARCHAR) [VARYING] [‘(‘int ‘)’] [CHARACTER SET id ] Collate .

Collate XE "Collate"  
=
[ COLLATE id ] .

There is no need to specify COLLATE UNICODE XE "UNICODE" , since this is the default collation. COLLATE UCS_BASIC is supported but deprecated. For the list of available collations, see .NET documentation.

FloatType XE "FloatType"  =
(FLOAT|REAL XE "REAL" ) [‘(‘int’,’int’)’] .

IntegerType XE "IntegerType"  = 
INT | INTEGER .

LobType XE "LobType"  = 
BLOB XE "BLOB"  | CLOB XE "CLOB"  | NCLOB XE "NCLOB"  .

CLOB is a synonym for CHAR in Pyrrho (both represent unbounded string). Similarly NCLOB is a synonym for NCHAR.

NumericType XE "NumericType"  = 
(NUMERIC|DECIMAL|DEC) [‘(‘int’,’int’)’] .

DateTimeType XE "DateTimeType"  =  (DATE | TIME | TIMESTAMP) ([IntervalField [ TO IntervalField ]] | ['(' int ')']).

The use of IntervalFields when declaring DateTimeType  is an addition to the SQL standard.

IntervalType XE "IntervalType"  = 
INTERVAL IntervalField [ TO IntervalField ] .

IntervalField XE "IntervalField"  = 
YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [‘(‘ int ‘)’] .

XMLType XE "XMLType"  =
XML .

DefinedType XE "DefinedType"  = 
ROW  Representation


|
TABLE Representation


|
Type ARRAY

|
Type MULTISET XE "MULTISET"  .

7.5 Data Manipulation

Insert XE "Insert"  = 

INSERT [XMLOption]  INTO Table_id [ Cols ] Value .

The Value in this rule (and several others) should be of a row type. A simple case is INSERT INTO t VALUES (4,5) .

UpdatePositioned XE "UpdatePositioned"  = UPDATE [XMLOption] Table_id Assignment WHERE CURRENT OF Cursor_id .

UpdateSearched XE "UpdateSearched"  = UPDATE [XMLOption] Table_id Assignment [WhereClause] .

DeletePositioned XE "DeletePositioned"  = DELETE [XMLOption] FROM Table_id WHERE CURRENT OF Cursor_id .

DeleteSearched XE "DeleteSearched"  = DELETE [XMLOption] FROM Table_id [ WhereClause] .

CursorSpecification XE "CursorSpecification"  = [ XMLOption ] QueryExpression [ OrderByClause ] .

A simple table query XE "simple table query"  is defined (SQL2003-02 14.1SR18c) as a CursorSpecification in which the QueryExpression is a QueryTerm that is a QueryPrimary that is a QuerySpecification.

QueryExpression XE "QueryExpression"  = QueryTerm 

| QueryExpression ( UNION XE "UNION"  | EXCEPT XE "EXCEPT"  ) [ ALL | DISTINCT XE "DISTINCT"  ] QueryTerm .

DISTINCT is the default and discards duplicates from both operands. 

QueryTerm XE "QueryTerm"  = QueryPrimary | QueryTerm INTERSECT [ ALL | DISTINCT ] QueryPrimary .

DISTINCT is the default.

QueryPrimary XE "QueryPrimary"  = QuerySpecification | Value | TABLE id .

QuerySpecification XE "QuerySpecification"  = SELECT [ ALL | DISTINCT ]  SelectList TableExpression .

SelectList XE "SelectList"  = ‘*’ | SelectItem { ‘,’ SelectItem } .

SelectItem XE "SelectItem"  = Value [AS id ] .

TableExpression XE "TableExpression"  = FromClause [ WhereClause ] [ GroupByClause ] [ HavingClause ] [WindowClause] .

GroupByClause and HavingClause are used with aggregate functions.

FromClause XE "FromClause"  = 
FROM TableReference { ‘,’ TableReference } .

WhereClause XE "WhereClause"  = WHERE BooleanExpr .

GroupByClause XE "GroupByClause"  = GROUP BY [DISTINCT|ALL] GroupingSet { ‘,’ GroupingSet } .

GroupingSet XE "GroupingSet"  = OrdinaryGroup | RollCube | GroupingSpec | ‘(‘’)’.

OrdinaryGroup XE "OrdinaryGroup"  = ColumnRef [Collate] | ‘(‘ ColumnRef  [Collate] { ‘,’ ColumnRef  [Collate] } ‘)’ .

RollCube XE "RollCube"  = (ROLLUP|CUBE) ‘(‘ OrdinaryGroup { ‘,’ OrdinaryGroup } ‘)’ . 

GroupingSpec XE "GroupingSpec"  = GROUPING SETS ‘(‘ GroupingSet { ‘,’ GroupingSet } ‘)’ .

HavingClause XE "HavingClause"  = HAVING BooleanExpr .

WindowClause XE "WindowClause"  = WINDOW WindowDef { ‘,’ WindowDef } .

Window clauses are only useful with window functions, which are discussed in section 7.7.

WindowDef XE "WindowDef"  = id AS ‘(‘ WindowDetails ‘)’ .

WindowDetails XE "WindowDetails"  = [Window_id] [ PartitionClause] [ OrderByClause ] [ WindowFrame ] .

PartitionClause XE "PartitionClause"  =  PARTITION BY  OrdinaryGroup .

WindowFrame XE "WindowFrame"  = (ROWS|RANGE) (WindowStart|WindowBetween) [ Exclusion ] .

WindowStart XE "WindowStart"  = ((Value | UNBOUNDED XE "UNBOUNDED" ) PRECEDING) | (CURRENT ROW) .

WindowBetween XE "WindowBetween"  = BETWEEN XE "BETWEEN"  WindowBound AND WindowBound .

WindowBound XE "WindowBound"  = WindowStart | ((Value | UNBOUNDED) FOLLOWING ) .

Exclusion XE "Exclusion"  = EXCLUDE ((CURRENT ROW)|GROUP|TIES|(NO OTHERS)) .

TableReference XE "TableReference"  = TableFactor Alias | JoinedTable

| TableReference FOLD | TableReference INTERLEAVE WITH QueryPrimary .

FOLD and INTERLEAVE are defined in Pyrrho on semitemporal tables. FOLD discards rows where the only change is to the temporal column, and its result is a temporal table. INTERLEAVE inserts extra temporal values.

TableFactor XE "TableFactor"  = 
Table_id 

| 
View_id 

|
ROWS '(' int [ ',' int ] ')'

| 
Table_FunctionCall 

|
Subquery

| 
'(' TableReference ')'

| 
TABLE ‘(‘ Value ‘)’ 

| 
UNNEST XE "UNNEST"  ‘(‘ Value ‘)’ .

ROWS(..) is a Pyrrho extension (for table and cell logs).

Alias XE "Alias"  = 

[[AS] id [ Cols ]] .

Subquery =
'(' QueryExpression ')' .

JoinedTable XE "JoinedTable"  = 
TableReference CROSS XE "CROSS"  JOIN TableFactor 


|
TableReference NATURAL XE "NATURAL"  [JoinType] JOIN TableFactor


|
TableReference TEMPORAL XE "TEMPORAL"  [[AS] id] JOIN TableFactor 


|
TableReference [JoinType] JOIN TableReference ON SearchCondition .

Temporal joins are defined in Pyrrho on temporal tables (see section 7.12). The id gives an alias for the result of temporal join, that can be used with NEXT or LAST.

JoinType XE "JoinType"  = 
INNER XE "INNER"  | ( LEFT XE "LEFT"  | RIGHT XE "RIGHT"  | FULL XE "FULL"  ) [OUTER XE "OUTER" ] .

SearchCondition XE "SearchCondition"  = BooleanExpr . 
OrderByClause XE "OrderByClause"  = ORDER BY OrderSpec { ‘,’ OrderSpec } .

OrderSpec XE "OrderSpec"  = Value [ ASC XE "ASC"  | DESC XE "DESC"  ] [ NULLS XE "NULLS"  ( FIRST XE "FIRST"  | LAST XE "LAST"  )] .

The default order is ascending, nulls first.

7.6 Value

Value XE "Value"  = 

Literal


|
Value BinaryOp Value 

| 
‘-‘ Value 

|
‘(‘ Value ‘)’


|
Value Collate 

| 
Value ‘[‘ Value ‘]’


|
ColumnRef  

| 
VariableRef 

|
VALUE 

|
Value ‘.’ Member_id

|
MethodCall

|
NEW MethodCall 

| 
FunctionCall 


|
VALUES XE "VALUES"   ‘(‘ Value { ‘,’ Value } ‘)’ { ‘,’ ‘(‘ Value { ‘,’ Value } ‘)’ }


|
Subquery


|
( MULTISET XE "MULTISET"  | ARRAY | ROW) ‘(‘ Value { ‘,’ Value } ‘)’

| 
TABLE ‘(‘ Value ‘)’ 

|
TREAT XE "TREAT"  ‘(‘ Value AS Sub_Type ‘)’  .

The VALUE keyword is used in Check Constraints. Collate if specified applies to an immediately preceding Boolean expression, affecting comparison operands etc. 

BinaryOp XE "BinaryOp"  =
‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘||’ | MultisetOp . 

|| is used in array concatenation.

VariableRef XE "VariableRef"  =
{ Scope_id ‘.’ } Variable_id .

ColumnRef XE "ColumnRef"  =
[ TableOrAlias_id ‘.’ ]  Column_id 


| TableOrAlias_id '.' (POSITION| NEXT | LAST) .

The use of POSITION, NEXT, LAST (pseudo-columns) is a change to SQL2003 behaviour. POSITION refers to the defining position of a row, and is very efficient in constraints, join or where conditions for tables that do not have a primary key. NEXT and LAST are derived columns in temporal tables (see section 7.12).

MultisetOp XE "MultisetOp"  = MULTISET ( UNION | INTERSECT XE "INTERSECT"  | EXCEPT ) ( ALL | DISTINCT ) .

Literal XE "Literal"  = 
int 

| 
float 

| 
string 

|
TRUE | FALSE
| 
‘X’ ‘’’ { hexit } ‘’’

|
DATE date_string

|
TIME time_string

|
TIMESTAMP XE "TIMESTAMP"  timestamp_string

|
INTERVAL XE "INTERVAL"  [‘-‘] interval_string IntervalQualifier.

Strings are enclosed in single quotes. Two single quotes in a string represent one single quote. Hexits are hexadecimal digits 0-9, A-F, a-f and are used for binary objects. Dates, times and intervals use string (quoted) values and are not locale-dependent. For full details see SQL2003: e.g. 

· a date has format like DATE ‘yyyy-mm-dd’ ,

· a time has format like TIME ‘hh:mm:ss’ or TIME ‘hh:mm:ss.sss’ ,

· a timestamp is like TIMESTAMP ‘yyyy-mm-dd hh:mm:ss.ss’, 

· an interval is like e.g. 

· INTERVAL ‘yyy’ YEAR,

·  INTERVAL ‘yy-mm’ YEAR TO MONTH, 

· INTERVAL ‘m’ MONTH, 

· INTERVAL ‘d hh:mm:ss’ DAY(1) TO SECOND, 

· INTERVAL ‘sss.ss’ SECOND(3,2) etc.

IntervalQualifier XE "IntervalQualifier"  = StartField TO EndField 


| 
DateTimeField .

StartField XE "StartField"  = IntervalField [‘(‘ int ‘)’] .

EndField XE "EndField"  = IntervalField | SECOND [‘(‘ int ‘)’] .

DateTimeField XE "DateTimeField"  = StartField | SECOND [‘(‘ int [‘,’ int]’)’] .

The ints here represent precision for the leading field and/or the fractional seconds.

IntervalField XE "IntervalField"  = YEAR | MONTH | DAY | HOUR | MINUTE .

7.7 Boolean Expressions

BooleanExpr XE "BooleanExpr"  = BooleanTerm | BooleanExpr OR BooleanTerm .

BooleanTerm XE "BooleanTerm"  = BooleanFactor | BooleanTerm AND BooleanFactor .

BooleanFactor XE "BooleanFactor"  = [NOT] BooleanTest .

BooleanTest XE "BooleanTest"  = Predicate | ‘(‘ BooleanExpr ‘)’ | Boolean_Value .

Predicate XE "Predicate"  = Any | At | Between | Comparison | Current | Every | Exists | In | Like | Member | Null | Of 

| Some | Unique .

Any XE "Any"  = ANY ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

At XE "At"  = ColumnRef AT Value .

Between XE "Between"  = Value [NOT] BETWEEN [SYMMETRIC|ASYMMETRIC] Value AND Value .

Comparison XE "Comparison"  = Value CompOp Value .

CompOp XE "CompOp"  = ‘=’ | ‘<>’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ .

Current XE "Current"  = CURRENT ‘(‘ ColumnRef ‘)’.

Current and At can be used on default temporal columns of temporal tables. See section 7.12.

Every XE "Every"  = EVERY ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Exists XE "Exists"  = EXISTS QueryExpression .

FuncOpt XE "FuncOpt"  = [FILTER ‘(‘ WHERE SearchCondition ‘)’] [OVER WindowSpec] .

The presence of the OVER keyword makes a window function XE "window function" . In accordance with SQL2003-02 section 4.15.3, window functions can only be used in the select list of a QuerySpecification or SelectSingle or the order by clause of a “simple table query” as defined in section 7.5 above. Thus window functions cannot be used within expressions or as function arguments.

In XE "In"  = Value [NOT] IN ‘(‘ QueryExpression | ( Value { ‘,’ Value } ) ‘)’ .

Like XE "Like"  = Value [NOT] LIKE string .

Member XE "Member"  = Value [ NOT ] MEMBER OF Value .

Null XE "Null"  = Value IS [NOT] NULL .

Of XE "Of"  = Value IS [NOT] OF ‘(‘ [ONLY] Type {‘,’[ONLY] Type } ‘)’ .

Some XE "Some"  = SOME ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Unique XE "Unique"  = UNIQUE QueryExpression .

7.8 SQL Functions

FunctionCall XE "FunctionCall"  = NumericValueFunction | StringValueFunction | DateTimeFunction | SetFunctions | XMLFunction | UserFunctionCall | MethodCall .

NumericValueFunction XE "NumericValueFunction"  = AbsoluteValue | Avg | Cast | Ceiling | Coalesce | Correlation | Count | Covariance | Exponential | Extract | Floor | Grouping | Last | LengthExpression | Maximum | Minimum | Modulus | NaturalLogarithm | Next | Nullif | Percentile | Position | PowerFunction | Rank | Regression | RowNumber | SquareRoot | StandardDeviation | Sum | Variance .

AbsoluteValue XE "AbsoluteValue"  = ABS ‘(‘ Value ‘)’ .

Avg XE "Avg"  = AVG ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Cast XE "Cast"  = CAST ‘(‘ Value AS Type ‘)’ .

Ceiling XE "Ceiling"  = (CEIL|CEILING) ‘(‘ Value ‘)’ .

Coalesce XE "Coalesce"  = COALESCE ‘(‘ Value {‘,’ Value } ‘)’

Corelation XE "Corelation"  = CORR ‘(‘ Value ‘,’ Value ‘)’ FuncOpt .

Count XE "Count"  = COUNT ’(‘ ‘*’ ‘)’

| COUNT ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Covariance XE "Covariance"  = (COVAR_POP|COVAR_SAMP) ‘(‘ Value ‘,’ Value ‘)’ FuncOpt .

WindowSpec XE "WindowSpec"  = Window_id | ‘(‘ WindowDetails ‘)’ .

Exponential XE "Exponential"  = EXP ‘(‘ Value ‘)’ .

Extract XE "Extract"  = EXTRACT ‘(‘ ExtractField FROM Value ‘)’ .

ExtractField XE "ExtractField"  =  YEAR | MONTH | DAY | HOUR | MINUTE | SECOND.

Floor XE "Floor"  = FLOOR ‘(‘ Value ‘)’ .

Grouping XE "Grouping"  = GROUPING ‘(‘ ColumnRef { ‘,’ ColumnRef } ‘)’ .

Last = LAST ['(' ColumnRef ')' OVER WindowSpec ] .

LengthExpression XE "LengthExpression"  = (CHAR_LENGTH XE "CHAR_LENGTH" |CHARACTER_LENGTH|OCTET_LENGTH XE "OCTET_LENGTH" ) ‘(‘ Value ‘)’ .

Maximum XE "Maximum"  = MAX ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Minimum XE "Minimum"  = MIN ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Modulus XE "Modulus"  = MOD ‘(‘ Value ‘,’ Value ‘)’ .

NaturalLogarithm XE "NaturalLogarithm"  = LN ‘(‘ Value ‘)’ .

Next = NEXT ['(' ColumnRef ')' OVER WindowSpec ] .

Nullif XE "Nullif"  = NULLIF ‘(‘ Value ‘,’ Value ‘)’ .

Percentile XE "Percentile"  = (PERCENTILE_CONT|PERCENTILE_DISC) ‘(‘ Value ‘)’ WithinGroup .

WithinGroup XE "WithinGroup"  = WITHIN GROUP ‘(‘ OrderByClause ‘)’ .

Position XE "Position"  = POSITION [‘(‘Value IN Value ‘)’] .

Without parameters POSITION gives a Pyrrho log entry (see section 3.5).

PowerFunction XE "PowerFunction"  = POWER ‘(‘ Value ‘,’ Value ‘)’ .

Rank XE "Rank"  = (CUME_DIST|DENSE_RANK XE "DENSE_RANK" |PERCENT_RANK|RANK) ‘(‘’)’ OVER WindowSpec 

  | (DENSE_RANK|PERCENT_RANK XE "PERCENT_RANK" |RANK|CUME_DIST XE "CUME_DIST" ) ‘(‘ Value {‘,’ Value } ‘)’ WithinGroup .

Regression XE "Regression"  = (REGR_SLOPE|REGR_INTERCEPT|REGR_COUNT|REGR_R2|REGR_AVVGX| REGR_AVGY|REGR_SXX|REGR_SXY|REGR_SYY) ‘(‘ Value ‘,’ Value ‘)’ FuncOpt .

RowNumber XE "RowNumber"  = ROW_NUMBER ‘(‘’)’ OVER WindowSpec .

SquareRoot XE "SquareRoot"  = SQRT ‘(‘ Value ‘)’ .

StandardDeviation = (STDDEV_POP|STDDEV_SAMP) ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Sum XE "Sum"  = SUM ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

DateTimeFunction XE "DateTimeFunction"  = CURRENT_DATE | CURRENT_TIME | LOCALTIME XE "LOCALTIME"  | CURRENT_TIMESTAMP | LOCALTIMESTAMP .

StringValueFunction XE "StringValueFunction"  = Substring | RegularSubstring | Fold | Transcode | Transliterate | Trim | Overlay | Normalise | XmlAgg .

Substring XE "Substring"  = SUBSTRING ‘(‘ Value FROM Value [ FOR Value ] ‘)’ .

Fold XE "Fold"  = (UPPER|LOWER) ‘(‘ Value ‘)’ .

Trim XE "Trim"  = TRIM ‘(‘ [[LEADING|TRAILING|BOTH] [character] FROM] Value ‘)’ .

Variance XE "Variance"  = (VAR_POP|VAR_SAMP) ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

XmlAgg XE "XmlAgg"  = XMLAGG ‘(‘ Value ‘)’ .

SetFunction XE "SetFunction"  = Cardinality | Collect | Element | Fusion | Intersect | Set .

Collect XE "Collect"  = COLLECT ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt  .

Fusion XE "Fusion"  = FUSION ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt  .

Intersect XE "Intersect"  = INTERSECT ‘(‘ [DISTINCT|ALL] Value) ’)’ FuncOpt .

Cardinality XE "Cardinality"  = CARDINALITY ‘(‘ Value ‘)’ .

Element XE "Element"  = ELEMENT ‘(‘ Value ‘)’ .

Set XE "Set"  = SET ‘(‘ Value ‘)’ .

7.9 Statements

Assignment XE "Assignment"  = 
SET Target ‘=’ Value { ‘,’ Target ‘=’ Value }


|
SET ‘(‘ Target { ‘,’ Target } ‘)’ ‘=’ Value .

Target XE "Target"  = 
id { ‘.’ id } .

Targets which directly contain parameter lists are not supported in the SQL2003 standard.

Call XE "Call"  = 

CALL Procedure_id ‘(‘ [ Value { ‘,’ Value } ] ‘)’ 


|
MethodCall .

CaseStatement XE "CaseStatement"  = 
CASE Value { WHEN Value THEN Statements } [ ELSE Statements ] END CASE
|
CASE { WHEN SearchCondition THEN Statements } [ ELSE Statements ] END CASE .

There must be at least one WHEN in the forms shown above.

Close XE "Close"  =

CLOSE id .

CompoundStatement XE "CompoundStatement"  = Label BEGIN XE "BEGIN"  [XMLDec] Statements END .

XMLDec = DECLARE Namespace ‘;’ .

Declaration XE "Declaration"  = 
DECLARE id { ‘,’ id } Type

|
DECLARE id CURSOR FOR QueryExpression [ FOR UPDATE [ OF Cols ]] 

|
DECLARE HandlerType HANDLER FOR ConditionList Statement .

HandlerType XE "HandlerType"  = 
CONTINUE | EXIT | UNDO .

ConditionList XE "ConditionList"  =
Condition { ‘,’ Condition } .

Condition XE "Condition"  =
Condition_id | SQLSTATE string | SQLEXCEPTION | SQLWARNING | (NOT FOUND) .

Fetch XE "Fetch"  =

FETCH Cursor_id INTO VariableRef { ‘,’ VariableRef } .

ForStatement XE "ForStatement"  =
Label FOR [ For_id AS ][ id CURSOR FOR ] QueryExpression DO Statements END FOR [Label_id] .

IfStatement XE "IfStatement"  = 
IF BooleanExpr THEN Statements { ELSEIF BooleanExpr THEN Statements } [ ELSE Statements ] END IF .

Label XE "Label"  =
[ label ‘:’ ] .

LoopStatement XE "LoopStatement"  =
Label LOOP Statements END LOOP .

Open XE "Open"  =

OPEN id .

Repeat XE "Repeat"  =

Label REPEAT Statements UNTIL BooleanExpr END REPEAT .

SelectSingle XE "SelectSingle"  =
QueryExpresion INTO  VariableRef { ‘,’ VariableRef } .

Statements XE "Statements"  = 
Statement { ‘;’ Statement } .

While XE "While"  =

Label WHILE SearchCondition DO Statements END WHILE .

UserFunctionCall XE "UserFunctionCall"  = Id ‘(‘ [ Value {‘,’ Value}] ‘)’ .

MethodCall XE "MethodCall"  = 
Value ‘.’ Method_id  [ ‘(‘ [ Value { ‘,’ Value } ] ‘)’]


|
‘(‘ Value AS Type ‘)’ ‘.’ Method_id  [ ‘(‘ [ Value { ‘,’ Value } ] ‘)’]

|
Type’::’ Method_id [ ‘(‘ [ Value { ‘,’ Value } ] ‘)’ ] .

7.10 XML Support

XMLFunction XE "XMLFunction"  = 
XMLComment | XMLConcat | XMLElement | XMLForest | XMLParse | XMLProc | XMLRoot | XMLAgg | XPath .

XPath is not in the SQL2003 standard but has become popular. See section 5.9.

XMLComment XE "XMLComment"  = XMLCOMMENT ‘(‘ Value ‘)’ .

XMLConcat XE "XMLConcatenation"  = XMLCONCAT ‘(‘ Value {‘,’ Value } ‘)’ .

XMLElement XE "XMLElement"  = XMLELEMENT ‘(‘ NAME id [ ‘,’ Namespace ] [‘,’ AttributeSpec ]{ ‘,’ Value } ‘)’ .

Namespace XE "Namespace"  = XMLNAMESPACES ‘(‘ NamespaceDefault |( string AS id {‘,’ string AS id }) ‘)’ .

NamespaceDefault = (DEFAULT string) | (NO DEFAULT) .

AttributeSpec XE "AttributeSpec"  = XMLATTRIBUTES ‘(‘ NamedValue {‘,’ NamedValue }‘)’ .

NamedValue XE "NamedValue"  = Value [ AS id ] .

XMLForest XE "XMLForest"  = XMLFOREST ‘(‘ [ Namespace ‘,’] NamedValue { ‘,’ NamedValue } ‘)’ .

XMLParse XE "XMLParse"  = XMLPARSE ‘(‘ CONTENT Value ‘)’ .

XMLProc = XMLPI ‘(‘ NAME id [‘,’ Value ] ‘)’ .

XMLRoot XE "XMLRoot"  = XMLROOT ‘(‘ Value ‘,’ VERSION (Value | NO VALUE) [‘,’STANDALONE (YES|NO|NO VALUE)] ‘)’ .

NO VALUE is the default for the standalone property.

XPath XE "XPath"  = XPATH ‘(‘ Value ‘,’ xml ‘)’ .

PathExpression for XPath is defined on www.w3.org: e.g. ‘/books/book[price<30]’ . See section 5.19. Value should be an XML-valued expression. The xml should be a PathExpression. The result of the XPath is XML.

create table test1(id int primary key,firstname char)

insert into test1(firstname)values('Fred'),('Joe')

create table test2(what xml)

insert with xmlnamespaces(default 'uri:pyrrhodb.com/alpha') into test2 select xmlagg(xmlelement(name test,xmlattributes(id,firstname))) from test1

table test2

[image: image30.png]I8l Shortcut to PyrrhoCmd.exe HE





7.11 SQL2003 compliance

Comments on this section are welcome. In some cases, there are features of SQL2003 that might be an enhancement, e.g. window functions. Some features of this section represent consequences of Pyrrho’s standpoint and might be more difficult.

Not all of the requirements of SQL2003 are sensible. For example, in Pyrrho the REVOKE statement, if issued by a user entitled to do so, simply withdraws privileges as requested, without reference to the GRANT histories. This is more secure than having complicated rules about the circumstances in which the grantee continues to enjoy privileges despite REVOKE statements.

Pyrrho conforms to the mandatory features in SQL2003 with the exceptions noted in the Comments following:

	Feature code
	Description
	Comments

	E011
	Numeric data types
	Precision if specified is in decimal digits.

	E011-01
	INTEGER and SMALLINT data types (including all spellings)
	INTEGER and INT are supported and are synonyms. The default precision is unbounded. SMALLINT is not supported

	E011-02
	REAL, DOUBLE PRECISION and FLOAT data types
	REAL and FLOAT are supported and are synonyms. Default precision is 13 digits. Precision greater than this can be specified. DOUBLE PRECISION is not supported (double what?)

	E011-03
	DECIMAL and NUMERIC data types
	DECIMAL and NUMERIC are synonyms. Arithmetic is exact unless constrained by the appropriate precision. Default precision is 13 digits. Precision greater than this can be specified.

	E011-04
	Arithmetic operators
	

	E011-05
	Numeric comparison
	

	E011-06
	Implicit casting among the numeric data types
	

	E021
	Character string types
	

	E021-01
	CHARACTER data type
	Represents an unbounded string by default. A maximum length can be specified.

	E021-02
	CHARACTER VARYING data type
	VARYING is permitted but ignored (all character string data types are variable length, possibly limited to a specified maximum length)

	E021-03
	Character literals
	

	E021-04
	CHARACTER_LENGTH function
	

	E021-05
	OCTET_LENGTH function
	

	E021-06
	SUBSTRING function
	

	E021-07
	Character concatenation
	

	E021-08
	UPPER and LOWER functions
	

	E021-09
	TRIM function
	

	E021-10
	Implicit casting among the fixed length and variable-length character string types
	

	E021-11
	POSITION function
	

	E021-12
	Character comparison
	

	E031
	Identifiers
	

	E051
	Basic query specification
	

	E061
	Basic predicates and search conditions
	

	E071
	Basic query expressions
	

	E081
	Basic privileges
	REVOKE semantics: see section 7.13

	E091
	Set functions
	

	E101
	Basic data manipulation
	

	E111
	Single row SELECT statement
	

	E121
	Basic cursor support
	

	E131
	Null value support
	

	E141
	Basic integrity constraints
	

	E151
	Transaction support
	

	E152
	Basic Set Transaction statement
	Not supported. Serializable isolated transactions are supported (see T241 below). No other modes are permitted.

	E153
	Updatable queries with subqueries
	

	E154
	SQL comments using leading double minus
	

	E182
	Module language
	Represents obsolete technology. ADO.NET and persistent SQL stored modules (SQL2003-4) are supported instead. External routines can be provided in any .NET programming language.

	F031
	Basic schema manipulation
	

	F041
	Basic joined table
	

	F051
	Basic date and time
	

	F081
	UNION and EXCEPT in views
	

	F131
	Grouped operations
	

	F181
	Multiple module support
	Represents obsolete technology. Pyrrho supports multiple client applications.

	F201
	CAST function
	

	F221
	Explicit defaults
	Default value can be any meaningful expression 

	F261
	CASE expression
	

	F311
	Schema definition statement
	CREATE SCHEMA is not supported. Other database objects defined belong to the database.

	F471
	Scalar subquery values
	

	F481
	Expanded NULL predicate
	

	F812
	Basic flagging
	Pyrrho’s extensions: Rename, AUTHORITY, and RDF, ROWS, POSITION

	S011
	Distinct data types
	

	T321
	Basic SQL-invoked routines
	

	T631
	IN predicate with one list element
	


Unless otherwise indicated conformance/non-conformance with a feature implies conformance/non-conformance with its subfeatures.

Pyrrho conforms to the following optional features in SQL2003

	Feature code
	Description
	Comments

	B021
	Direct SQL
	Using System.Data; (ADO.NET) class library

	B128
	Routine language SQL
	

	F032
	CASCADE drop behaviour
	

	F033
	ALTER TABLE statement: DROP COLUMN clause
	

	F034
	Extended REVOKE statement
	Semantics are intuitive (see section 7.13)

	F052
	Intervals and datetime arithmetic
	“Leap seconds” are not implemented

	F191
	Referential delete actions
	NO ACTION and SET NULL are not supported. .

	F231
	Privilege tables
	System table structure is modified from SQL2003

	F251
	Domain support
	

	F291
	UNIQUE predicate
	

	F302
	INTERSECT table operation
	

	F304
	EXCEPT ALL table operator
	

	F341
	Usage tables
	Help with renaming of objects

	F381
	Extended schema manipulation
	

	F391
	Long identifiers
	There is no practical limit on length of identifiers

	F401
	Extended joined table
	

	F421
	National character
	Supported but deprecated: prevents porting of database to other locales.

	F461
	Named character sets
	Names as specified in SQL2003 only

	F491
	Constraint management
	

	F555
	Enhanced seconds precision
	

	F591
	Derived tables
	

	F641
	Row and table constructors
	

	F661
	Simple tables
	

	F671
	Subqueries in CHECK
	

	F672
	Retrospective check constraints
	

	F690
	Collation support
	CREATE COLLATION is not supported since space-padding behaviour is irrelevant in Pyrrho.

	F701
	Referential update actions
	NO ACTION and SET NULL are not supported since both conflict with referential integrity (a null value may be implied by SET DEFAULT).

	F711
	ALTER domain
	

	F731
	INSERT column privileges
	

	P002
	Computational completeness
	

	P006
	Multiple assignment
	

	S023
	Basic structured types
	

	S091
	Basic array support
	

	S092
	Arrays of user-defined types
	

	S095
	Array constructors by query
	

	S271
	Basic multiset support
	

	S272
	Multisets of user-defined types
	

	S275
	Advanced multiset support
	

	T031
	BOOLEAN data type
	

	T041
	Basic LOB data type support
	

	T041-01
	BLOB data type
	

	T041-02
	CLOB data type
	Equivalent to CHAR (no practical size limit)

	T051
	Row types
	

	T061
	UCS support
	Pyrrho uses the Normalize function but does not make it available to SQL.

	T175
	Generated columns
	

	T191
	Referential action RESTRICT
	

	T211
	Basic trigger capability
	

	T281
	SELECT privilege with column granularity
	

	T324
	Explicit security for SQL routines
	

	T326
	Table functions
	

	T331
	Basic roles
	

	T332
	Extended roles
	

	T431
	Extended grouping function
	

	T432
	Nested and concatenated GROUPING SETS
	

	T433
	Multiargument GROUPING function
	

	T434
	GROUP BY DISTINCT
	

	T461
	Symmetric BETWEEN predicate
	

	T471
	Result sets return value
	

	T611
	Elementary OLAP operations
	

	T612
	Advanced OLAP operations
	

	X010
	XML type
	

	X031
	XML Element
	

	X032
	XML Forest
	

	X034
	XMLAgg
	Order By is not implemented

	X037
	XML Processing Instruction
	

	X080
	Namespaces in XML publishing
	

	X060
	XML Parse: CONTENT option
	

	X070
	XML Serialize: CONTENT option
	


Unless otherwise indicated conformance with a feature implies conformance with its sub-features.

Pyrrho does not offer the following optional features from SQL2003. Many represent obsolete technology or bad practice (e.g. building in platform or locale dependency into the stored data, or defeating authentication or transaction principles). 

	Feature code
	Description
	Comments

	B011
	Embedded Ada
	Represent obsolete mechanisms for programming database applications.

	B012
	Embedded C
	

	B013
	Embedded COBOL
	

	B014
	Embedded Fortran
	

	B015
	Embedded MUMPS
	

	B016
	Embedded Pascal
	

	B017
	Embedded PL/1
	

	B031
	Basic dynamic SQL
	Available using ADO.NET

	B032
	Extended dynamic SQL
	

	B033
	Untyped SQL-invoked function arguments
	

	B034
	Dynamic specification of cursor attributes
	

	B041
	Extensions to embedded SQL exception declarations
	

	B051
	Enhanced execution rights
	

	B111
	Module language Ada
	Stored procedures in SQL are supported

	B112
	Module language C
	

	B113
	Module language COBOL
	

	B114
	Module language Fortran
	

	B115
	Module language MUMPS
	

	B116
	Module language Pascal
	

	B117
	Module language PL/1
	

	B121
	Routine language Ada
	

	B122
	Routine language C
	

	B123
	Routine language COBOL
	

	B124
	Routine language Fortran
	

	B125
	Routine language MUMPS
	

	B126
	Routine language Pascal
	

	B127
	Routine language PL/1
	

	F053
	OVERLAPS predicate
	

	F111
	Isolation levels other than SERIALIZABLE
	Conflicts with ACID transaction properties

	F121
	Basic diagnostics management
	

	F171
	Multiple schemas per user
	

	F222
	INSERT statement: DEFAULT VALUES clause
	

	F262
	Extended CASE expression
	

	F263
	Comma-separated predicates in simple CASE expression
	

	F271
	Compound character literals
	

	F281
	LIKE enhancements
	

	F301
	CORRESPONDING in query expressions
	

	F312
	MERGE statement
	

	F321
	User authorization
	Done by the operating system, recorded in Pyrrho. It is bad practice for a DBMS to have a different system.

	F361
	Subprogram support
	

	F392
	Unicode escapes in literals
	

	F402
	Names column joins for LOBS, arrays and multisets
	Supported for arrays and multisets, not LOBs

	F411
	Time zone specification
	All times are stored in UTC, and presented in the server operating system’s time zone. Databases can therefore be replicated to other time zones.

	F431 
	Read-only scrollable cursors
	

	F441
	Extended set function support
	

	F442
	Mixed column references in set functions
	

	F443
	Character set definition
	

	F502
	Enhanced documentation tables
	

	F521 
	Assertions
	

	F531
	Temporary tables
	See section 2.7 for alternatives

	F561
	Full value expressions
	

	F571
	Truth value tests
	

	F611
	Indicator data types
	DBNull is a possible returned type, so special indicator types are not needed.

	F651
	Catalog name qualifiers
	

	F691
	Collation and translation
	

	F692
	Enhanced collation support
	

	F693
	SQL-session and client module collations
	

	F695
	Translation support
	

	F721
	Deferrable constraints
	

	F741
	Referential MATCH types
	

	F751
	VIEW CHECK enhancements
	

	F761
	Session management
	Done by the operating system.

	F771
	Connection management
	

	F781
	Self-referencing operations
	

	F791
	Insensitive cursors
	

	F801
	Full set function
	

	F813
	Extended flagging
	

	F821
	Local table references
	

	F831
	Full cursor update
	

	S024
	Enhanced structured types
	

	S025
	Final structured types
	

	S026
	Self-referencing structured types
	

	S027
	Create method by specific method name
	

	S028
	Permutable UDT options list
	

	S041
	Basic reference types
	

	S043
	Enhanced reference types
	

	S051
	Create table of type
	

	S071
	SQL paths in function and type name resolution
	

	S081
	Subtables
	

	S094
	Arrays of reference types
	

	S096
	Optional array bounds
	

	S097
	Array element assignment
	

	S111
	ONLY in query expressions
	

	S151
	Type predicate
	

	S161
	Subtype treatment
	

	S162
	Subtype treatment for references
	

	S201
	SQL-invoked routines on arrays
	

	S202
	SQL-invoked routines on multisets
	

	S211
	User-defined cast functions
	

	S231
	Structured type locators
	

	S232
	Array locators
	

	S233
	Multiset locators
	

	S241
	Transform function
	

	S242
	Alter transform statement
	

	S251
	User-defined orderings
	

	S261
	Specific type method
	

	S274
	Multisets of reference types
	

	S281
	Nested collection types
	

	S291
	Unique constraint on entire row
	

	T011
	Timestamp in information schema
	

	T041-03
	POSITION etc on LOBs
	

	T041-04
	LOB concatenation
	

	T041-05
	LOB locator
	

	T042
	Extended LOB data type support
	

	T052
	MAX and MIN for row types
	

	T053
	Explicit aliases for all-fields reference
	

	T071
	BIGINT data type
	INT can store up to 2040-bit integers.

	T111
	Updatable joins, unions and columns
	

	T121
	WITH (excluding RECURSIVE) in query expression
	

	T122
	WITH (excluding RECURSIVE) in subquery
	

	T131
	Recursive query
	

	T132
	Recursive query in subquery
	

	T141
	SIMILAR predicate
	

	T151
	DISTINCT predicate
	

	T152
	DISTINCT predicate with negation
	

	T171
	LIKE clause in table definition
	

	T172
	AS subquery clause in table definition
	

	T173
	Extended LIKE clause in table definition
	

	T174
	Identity column
	INT PRIMARY KEY has automatic behaviour instead

	T176
	Sequence generator support
	INT PRIMARY KEY has automatic behaviour instead

	T201
	Comparable data types for referential constraints
	

	T212
	Enhanced trigger capability
	

	T231
	Sensitive cursors
	

	T241
	START TRANSACTION statement
	Implies nested transaction or defeats isolation

	T251
	SET TRANSACTION statement: LOCAL option
	

	T261
	Chained transactions
	Defeats ACID transaction principles

	T271
	Savepoints
	

	T272
	Enhanced savepoint management
	

	T301
	Functional dependencies
	

	T312
	OVERLAY function
	

	T322
	Overloading of SQL-invoked functions and procedures
	

	T323
	Explicit security for external routines
	

	T325
	Qualified SQL parameter references
	

	T351
	Bracketed SQL comments
	

	T441
	ABS and MOD function
	

	T491
	LATERAL derived table
	

	T501
	Enhanced EXISTS predicate
	

	T511 
	Transaction counts
	

	T551
	Optional key words for default syntax
	

	T561
	Holdable locators
	

	T571
	Array-returning external SQL-invoked functions
	

	T572
	Multiset-returning external SQL-invoked functions
	

	T581
	Regular expression substring function
	

	T591
	UNIQUE constraints of possibly null columns
	

	T601
	Local cursor references
	

	T613
	Sampling
	

	T621
	Enhanced numeric functions
	

	T641
	Multiple columns assignment
	

	T651
	SQL-schema statements in SQL routines
	

	T652
	SQL-dynamic statements in SQL routines
	

	T653
	SQL-schema statements in external routines
	

	T654
	SQL-dynamic statements in external routines
	

	T655
	Cyclically dependent routines
	

	X040
	Basic table mapping
	

	X050
	Advanced table mapping
	

	X061
	XML Parse: DOCUMENT option
	

	X062
	XML Parse: explicit WHITESPACE option
	

	X071
	XML Serialize: DOCUMENT
	

	X090
	XML document predicate
	


7.12 Proposed additions to the SQL2003 standard

The subsection numbering in this section corresponds to the SQL standard.

4.14.10 Temporal Tables

A table in which the last component of the primary key is of scalar type with a natural ordering, such as a date or timestamp, is called a semitemporal base table. The last component TK of the primary key PK is said to be the default temporal column of T. 

A semitemporal table is a table that is either a semitemporal base table or the result of FOLD or INTERLEAVE. FOLD removes "unnecessary" rows in T, which differ from existing rows only in CT, while INTERLEAVE adds such unnecessary rows. 

A temporal table is a semitemporal table T without unnecessary rows, i.e. such that T = T FOLD(CT) . In a temporal table T, the derived columns NEXT and LAST are defined. As with ordinary columns, NEXT and LAST may be prefixed by correlation or table names to indicate their table.

The TEMPORAL JOIN operation is available for performing a sort of natural join on two temporal tables whose default temporal columns have matching types, which are combined in the temporal join operation to provide a default temporal column in the result. For the purposes of this rule, date-time types shall not match if their specified or implied <interval qualifier>s do not match. The temporal join has a natural primary key consisting of the union of the non-temporal columns of the primary keys of the two temporal tables, together with the new temporal column.

If T has tenmporal column TK, then the temporal predicate CURRENT(TK) is equivalent to TK=T.LAST, and TK AT V is equivalent to (TK<=V and TK=T.LAST or T.NEXT>V) .
5.2 <token> and <separator>

Format

<non-reserved word> ::= … omit | LAST

<reserved word> ::= ..

| LAST | NEXT | FOLD | INTERLEAVE | TEMPORAL
6.1 <data type>

Format

<datetime type> ::=

  DATE [<interval qualifier>]

| TIME [<interval qualifier>] 

[ <left paren> <time precision> <right paren> ] [ <with or without time zone> ]

| TIMESTAMP [<interval qualifier>] 

[ <left paren> <timestamp precision> <right paren> ]

[ <with or without time zone> ]

Syntax Rules

Change rule 32) to If DATE is specified but an <interval qualifier> is not specified, the implicit interval qualifier shall be YEAR TO DAY. If TIME is specified but an <interval qualifier> is not specified, the implicit interval qualifier shall be HOUR TO SECOND. If TIMESTAMP is specified but an <interval qualifier> is not specified, the implicit interval qualifier shall be YEAR TO SECOND.

General Rules

Change rule 4) to For a <datetime type> the <primary datetime field>s contained shall be specified by the specified or implicit <interval qualifier> .

6.7
<column reference>

Format

<column reference> ::= ... 

| <basic identifier chain> <period > 

<derived temporal column> 

…

<derived temporal column > ::= 

  NEXT 

| LAST

Syntax Rules

Add

9) If NEXT or LAST is specified, then the <column referemce shall be contained in a <query specification> QS. whose <table expression> is a temporal table TR, BIC shall identify a temporal table T . If the <column reference> is contained in a <query specification> QS whose from clause contains only one table T, then BIC can be omitted, and the identification of T is implicit.

General Rules

Add

2) If NEXT or LAST is specified, 

a) Let the columns of TR be (CL1,…,CLn), reordering them if necessary so that the primary key of TR is (CL1,..,CLk). Then CR=CLk .Let CL=(CL1,..,CLk-1). 

b) Let LAST be the window function

MAX(CR) OVER (PARTITION BY CL)

c) Let NEXT be the window function

MAX(CR) OVER (PARTITION BY CL ORDER BY CR ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING) 

NOTE: (a) The use of MAX here is a no-operation since there is at most one row in the window frame. It is required syntactically in this expression. 

(b) NEXT and LAST are not derived columns in the sense used elsewhere in the standard, since they are computed in the table they relate to, ignoring any WHERE clasuses etc in the query specification in which they occur.

7.6 <table reference>

Format …
<table primary> ::= …

| <table primary> FOLD 

| <table primary> INTERLEAVE WITH <query primary>
Syntax Rules

Add

26) If FOLD or INTERLEAVE is specified, let PTR be the <table primary> specified as the argument to the FOLD or INTERLEAVE operation, and let TR be the <table primary> specified by the FOLD or INTERLEAVE operation.

a) PTR shall be a semitemporal table. Let CT be its default temporal column. Let DT be the data type of CT.

b) If INTERLEAVE is specified, let QP be the <query primary>. The result TT of QP shall be a table with a single column TC of the type DT. 

c) If FOLD or INTERLEAVE is specified let CN be the name of CT.

General Rules

Add

6) If FOLD is specified, let the semitemporal table PTR have columns S1,…,Sn such that the primary key CL is S1,..,Sk, with Sk=CT . Let SL be the list SL1,..,SLn-1. 
Then let PTR be ordered by CL. Let NCL=S1,..,Sk-1, the non-temporal components of CL. Partition PTR by NCL. Each window TP in the partition has identical values of NCL, and is ordered by distinct values of CT. Let TP = {TPij : i=1,..,m; j=1,..,n } be such a window, and let N = { i : TPij = TPi-1 j for all j such that k<j<=n }.

Define TS = { TPij :  1<=i<=m and i ( N; j=1,..,m } .

Then the result TR is the union of all such TS.  Its columns will be the columns of PTR with CT renamed as CN. It is a temporal table with the primary key consisting of NCL together with CN.
7) If INTERLEAVE is specified, let the semitemporal table PTR have columns S1,…,Sn such that Sn=CT . Let SL be the list SL1,..,SLn-1. Let TT be the result of QP and let TC be its single column. Then 
TR = SELECT SL,CT FROM PTR 

UNION DISTINCT 

SELECT SL,TC AS CN FROM PTR TN, TT WHERE TN.CT AT TC
The result is a semitemporal table with the same primary key as PTR.
7.7 <joined table>

Format

<joined table> ::= ...


| <temporal join>

<temporal join> ::= 

<table reference> TEMPORAL [AS <identifier>] JOIN <table factor> 
Syntax Rules

In the opening sentence of rules 6 and 7 replace NATURAL by NATURAL or TEMPORAL .
Add 

13) If TEMPORAL is specified, TR1 and TR2 shall be temporal tables with primary keys whose non-temporal columns are NK1 and NK2, and default temporal columns CT1 and CT2 respectively. Let NK be NK1 ( NK2. Let CN be the name of CT1. Let TRL be the column list of TR2 with the name of CT2 replaced by CN.

Then the <temporal join> shall be equivalent to

((TR1 INTERLEAVE WITH (SELECT CT2 AS CN FROM TR2)) 

NATURAL JOIN 

(TR2 TRL INTERLEAVE WITH (SELECT CT1 FROM TR1))) 

FOLD 

The result is a temporal table whose primary key is NK together with CN, and which can be referred to in an enclosing context by the <identifier> if specified.
8.1 <predicate>

Format

<predicate> ::= …

| <temporal predicate>

General Rules

Add at the end, or <temporal predicate>.
8.20 <temporal predicate>

Function

Specify a temporal condition that can be evaluated to give a boolean value.

Format

<temporal predicate> :: = CURRENT <column reference>

| <column reference> AT <value expression>

Syntax Rules

1) Let CR be the <column reference>. Then CR shall be the default temporal column of a table T. 

2) Let VE be the <value expression> .
3) CURRENT(CR) shall be equivalent to CR=T.LAST .
4) CR AT VE shall be equivalent to VE >= CR AND (CR=T.LAST OR VE<T.NEXT ).

10.1 <interval qualifier>

Function

Change to Specify the precision of a date-time or interval data type.
Syntax Rules

Change 2) to If TO is specified, then <start field> shall be more significant than <end field>.
7.13 Proposed simplification of the SQL2003 standard

The rationale for the following changes is twofold: (a) REVOKE should be effective whatever the history, (b) authorised changes should persist even after that authority is revoked (for example if an employee leaves, there may be implementation defined ways of recovering tables that have no authorised users). 
The following subsection number corresponds to the numbering in the SQL2003 standard.

12.7 <revoke statement>

Syntax Rules

Delete rules 10), 15)-37).
General Rules

Delete rules 1) to 18) and replace them with the following.
1) If the <revoke statement> is a <revoke privilege statement>, then all identified privilege descriptors are destroyed. If WITH HIERARCHY OPTION is specified, then the WITH HIERARCHY OPTION is removed from all identified privilege descriptors, if present. If GRANT OPTION FOR is specified, then all identified and modified privilege descriptors are set to indicate that they are not grantable.

2) If the <revoke statement> is a <revoke role statement>, then the identified grantees are removed from the identified role descriptors, if present.
8. Pyrrho Reference

There are three collections of system tables in Pyrrho. The Sys$ collections contain the current schema information set, with minimal support for accessing the Log$ collection. Both collections consist of virtual tables, whose data is constructed as required from the Pyrrho engine’s data structures.

The Log$ collection is for historical analysis. These system tables give SQL access to the complete database history.

The third kind of system table is for reviewing data operations on an individual table. See section 8.3.

All these tables and their attributes are case-sensitive, and the table-names contain the character $, so all SQL statements will need to use double-quoted (delimited) identifiers, as in

Select * from "Sys$Authority" where "Name" like 'Sales%'
8.1 Sys$ table collection

These contain the current schema as viewed by the database engine. The Position columns are provided to facilitate lookup of Log information.

All system tables are read-only: the only way to change anything in a database is by means of SQL. Two of the tables give the server configuration and the databases available. For other cases, the tables relate to the first database specified in the connection string.

8.1.1 Sys$Authority

This gives access to the current list of authorities for the database.

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	char
	The name of an AUTHORITY (unique in the database)

	Details
	char
	The user-friendly description of the AUTHORITY


An automatic entry is made in this table for a new database, with the same name as the database. This default authority has owner rights on the database, and is granted to the database owner.

8.1.2 Sys$Column
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Table
	Char
	The current identifier for the Table

	Name
	Char
	The current name of the Column (unique per table)

	Seq
	Int
	The column position (starting at 0)

	Domain
	Char
	The name of the Domain

	Default
	Char
	The code for generating a default value

	NotNull
	Boolean
	True if NOT NULL is set

	Generated
	Boolean
	True if GENERATED ALWAYS


8.1.3 Sys$ColumnCheck

	Field
	DataType
	Description

	Pos
	Int
	Position information for the current object

	TableName
	Char
	The current name of the table

	ColumnName
	Char
	The current name of the column

	CheckName
	Char
	The current name of the check

	Select
	Char
	The QueryExpression used to check the VALUE


8.1.4 Sys$ColumnUser
	Field
	DataType
	Description

	Table
	Char
	The current name of the Table

	Column
	Char
	The current name of the Column

	GranteeType
	Char
	The sort of Grantee

	Grantee
	Char
	The Grantee identifier

	Privilege
	Char
	The privilege available to this Grantee on this column


This table shows the results of column level grants: preferably to authorities rather than actual users.
8.1.5 Sys$Configuration

	Field
	DataType
	Description

	Property
	Char
	A configuration property (see below)

	Value
	Char
	A string representation of the property value


This table gives access to certain configurable parameters of the database server.
	Property
	Description

	MinimiseDiskReads XE "MinimiseDiskReads" 
	This property can be configured in the command line when starting the server. This property can be overridden for individual databases.

	AllowDatabaseCreation XE "AllowDatabaseCreation" 
	In Enterprise edition this property can be configured in the SvrConfig.xml file. 

	SegmentationBits XE "SegmentationBits" 
	Determines the size of database files: default value is 32GB. Database files larger than this are divided into a sequence of files all but the last are of this size.

	ValueRowSetLimit XE "ValueRowSetLimit" 
	Maximum size of a Value rowset. If zero, this is determined by the operating system.

	IndexLimit XE "IndexLimit" 
	Maximum  size of an Index data structure. If zero, this is determined by the operating system.

	Edition
	Personal, Professional, Mobile, Enterprise, or Datacenter

	Service
	Whether the server is running as a Windows service (always false on non-Windows systems)


8.1.6 Sys$Connection
	Field
	DataType
	Description

	Ordinal
	Int
	The ordinal of the database in the connection

	Database
	Char
	The database name

	Owner
	Char
	The name of the database owner

	User
	Char
	The current user

	Authority
	Char
	The current authority

	Auth_Details
	Char
	The descriptive text for the current authority

	Pos
	Int
	Current database file length

	RemoteOK
	Bool
	Remote server status (Mobile edition only)


This table gives read access to the properties of the current connection.

8.1.7 Sys$Database
	Field
	DataType
	Description

	Name
	Char
	A database name

	Loaded
	Boolean
	Whether the database's data structures are in memory


This table gives read access to the list of databases known to the server (the contents of the database folder, and any configured or open databases). The server configuration determines the accessibility of this information. 

8.1.8 Sys$DatabaseConfiguration

	Field
	DataType
	Description

	File
	Char
	The database name

	Investigator
	Char
	The user authorised to examine logs for the database

	MinimiseDiskReads
	Boolean
	The MinimiseDiskReads setting for this database (default is the system value for this property). If Forget is configured for a table, this property is set to false.

	Preload
	Boolean
	Whether the database is preloaded on server startup

	Write
	Boolean
	Whether the database allows updates

	Host
	Char
	The remote host (remote databases only)

	Port
	Int
	The remote port (remote databases only)

	Init
	Char
	An initialisation file (remote databases only)


This table gives read access to the settings for each database in the configuration file. (Enterprise, Mobile and Datacenter editions only).

8.1.9 Sys$DatabaseTableConfiguration

	Field
	DataType
	Description

	Database
	Char
	The name of the database

	DefPos
	Int
	The defining position of a table in the database

	Column
	Int
	The defining position of the temporal column

	Forget
	Char
	A DateTime: records before this time will not be indexed


This table gives read access to the settings specified for temporal tables in the configuration file. (Enterprise, Mobile and Datacenter editions only). If any of this data is configured for a database, the MinimiseDiskReads property of the database is switched off.
8.1.10 Sys$Domain
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	Char
	The current identifier for the DOMAIN. May have forms such as CHAR(6), U(5005) if not user-defined (see note below).

	DataType
	Char
	The data type

	DataLength
	Int
	The data length (precision for DECIMAL, REAL, INTEGER)

	Scale
	Int
	The scale (for DECIMAL type)

	DefaultValue
	Char
	String representation of the default value

	Struct
	Int
	Type string for MULTISET or ARRAY or ROW element


Pyrrho creates a new domain for each new type in the database (e.g. CHAR(6) ), and makes a special domain for evaluating generated columns. 
8.1.11 Sys$DomainCheck
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	DomainName
	char
	The current identifier for the DOMAIN

	CheckName
	Char
	The current identifier for the CHECK (unique per domain)

	Select
	Char
	The QueryExpression used to check the VALUE


8.1.12 Sys$Index
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Table
	Char
	The current name of the table

	Name
	Char
	The name of the index (see note)

	Flags
	Int
	Sum of values in table below

	RefTable
	Char
	Name of referenced table (or null)

	RefIndex
	Char
	Name of referenced index (or null)

	Distinct
	Int
	Number of distinct values


User indexes are not supported in SQL2003. Pyrrho builds indexes automatically for all primary, unique, and foreign keys (there is no CREATE INDEX) in order to enforce integrity and referential constraints. They have names like U(67).
	Flag
	Meaning

	1
	Primary Key

	2
	Foreign Key

	4
	Unique

	8
	Descending

	16
	 XE "Restrict Update" Restrict Update

	32
	 XE "Cascade Update" Cascade Update

	64
	 XE "Set Default Update" Set Default Update

	128
	 XE "Set Null Update" Set Null Update

	256
	 XE "Restrict Delete" Restrict Delete

	512
	 XE "Cascade Delete" Cascade Delete

	1024
	 XE "Set Default Delete" Set Default Delete

	2048
	 XE "Set Null Delete" Set Null Delete


The Restrict flags are currently unused, since RESTRICT is the default and is only overridden if CASCADE or SET NULL has been set.
8.1.13 Sys$IndexKey
	Field
	DataType
	Description

	IndexName
	Char
	The name of the index

	TableColumn
	Char
	The current name of the column

	Position
	Int
	Zero-based column position in the index


8.1.14 Sys$Method

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	Char
	The identifier for the type (unique in the database)

	Method
	Char
	The name of the method

	Arity
	Int
	The number of parameters

	MethodType
	Char
	Instance, Constructor, Static, or Overriding

	Definition
	Char
	The method body


8.1.15 Sys$PrimaryKey
	Field
	DataType
	Description

	Table
	Char
	The current name of the table

	Ordinal
	Int
	The position of the column in the primary key

	Column
	Char
	The current name of the column


8.1.16 Sys$Privilege
	Field
	DataType
	Description

	ObjectType
	Char
	The kind of object for which the privilege is granted

	Name
	Char
	The name of the object for which the privilege is granted

	GranteeType
	Char
	The Grantee type

	Grantee
	Char
	The Grantee name

	Privilege
	Char
	The privilege granted


This table shows all grants made except for column grants. The contents are affected by changes to role privileges and the dropping of relevant objects. 
8.1.17 Sys$Procedure
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	Char
	The current name of the Procedure or Function

	Arity
	Int
	The number of parameters.

	Definition
	Char
	The string containing the procedure or function definition


The Definition starts from the beginning of the parameter list.
8.1.18 Sys$Role

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	char
	The Role identifier

	Type
	char
	Role or Authority


8.1.19 Sys$Table
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	Char
	The name of the Table

	Columns
	Int
	The number of columns

	Rows
	Int
	The number of rows

	Triggers
	Int
	The number of triggers

	CheckConstraints
	Int
	The number of Table check constraints

	References
	Int
	The number of references

	Owner
	Char
	The owner of the table (a User)


Base tables are entered in this table. Entries are made in Sys$Table also for anonymous row types, with names such as “ROW(F INT,G CHAR)”.
8.1.20 Sys$TableCheck
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	TableName
	Char
	The current identifier for the Table

	CheckName
	Char
	The identifier for the CHECK (unique per table)

	Select
	Char
	The QueryExpression used to check the VALUE


8.1.21 Sys$Trigger

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the trigger

	Name
	Char
	The name of the Trigger

	Flags
	Char
	Before/After, Insert/Delete/Update

	TableName
	Char
	The current name of the table concerned

	OldRow
	Char
	Referencing identifier for old row

	NewRow
	Char
	Referencing identifier for new row

	OldTable
	Char
	Referencing identifier for old table

	NewTable
	Char
	Referencing identifier from new table

	Def
	Char
	The current code for the trigger including WHEN if defined


8.1.22 Sys$TriggerUpdateColumn

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the trigger

	ColumnName
	Char
	Column for Update


8.1.23 Sys$Type

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	Char
	The identifier for the type (unique in the database)

	Supertype
	Char
	The name of the supertype


Other details are given in the Sys$Domain table.
8.1.24 Sys$User
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	Name
	char
	The user’s ID as provided by the operating system


The user name on Windows systems has the form dddd\nnnn (for user nnnn in domain or machine dddd). Users are created the first time they are granted privileges. (There is no CREATE USER in SQL2003.)
8.1.25 Sys$View
	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current object

	View
	char
	The current VIEW identifier

	Select
	char
	The current corresponding query expression


8.2 Log$ table collection

The Log$ tables generally identify all objects by (long) integer values, shown in the Sys$ tables as Pos, and in the Log$ tables as DefPos (the defining position of the object, i.e. the log entry which records the creation of the object).

Exceptions to this rule are view, check and procedure definitions, where the actual string used in the definition contains the names of referenced objects at the time the definition was made. The current state of the definition can be obtained from the system tables (definitions are automatically updated if tables and columns are renamed).

Tables in this collection are read-only. They are publicly available in the personal edition (with the recommended firewall configuration, see section 3, this means available on the local subnet or local machine). They are always available to the database owner. In the Enterprise and Datacenter editions they are available to the Investigator if configured.

8.2.1 Log$

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Desc
	char
	A semi-readable version of the log information

	Type
	Int
	The type of log entry (see table below)

	Affects
	Int
	The object affected

	Transaction
	Int
	The transaction this log entry belongs to


The Pos key enables machine-readable versions of the Log$ to be obtained from the tables described in the following sections.

	Type
	Log Entry
	Further information in
	Comments

	1
	Table
	Log$Table, Log$Column
	

	2
	Authority
	Log$Authority
	

	3
	Column
	Log$Column
	See also 24

	4
	Record (Insert)
	Log$Insert, Log$InsertField
	

	5
	Update
	Log$Update, Log$InsertField
	

	6
	Change
	Log$Change
	Rename object

	7
	Alter
	Log$Alter
	Alter column properties

	8
	Drop
	Log$Drop
	

	9
	Checkpoint
	
	

	10
	Delete
	Log$Delete
	

	11
	Edit
	Log$Edit
	Alter domain properties

	12
	Index
	Log$Index, Log$IndexKey
	

	13
	Modify
	Log$Modify
	Alter proc/func/method

	14
	Domain
	Log$Domain
	See also 24

	15
	Check
	Log$Check
	

	16
	Procedure/Function
	Log$Procedure
	

	17
	Trigger
	Log$Trigger, Log$TriggerUpdateColumn
	

	18
	View
	Log$View
	

	19
	User
	Log$User
	

	20
	Transaction
	Log$Transaction
	

	21
	Grant
	Log$Grant
	

	22
	Revoke
	Log$Revoke
	

	23
	Role
	Log$Role
	

	24
	Column2
	
	See Column

	25
	Type
	Log$Type
	See also Domain

	26
	Method
	Log$TypeMethod
	


8.2.2 Log$Alter

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	DefPos
	Int
	The defining position of the object

	Transaction
	Int
	The transaction this log entry belongs to


The new column information is recorded in the Log$Column table (for the same Pos).
8.2.3 Log$Authority

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The name of the authority

	Details
	Char
	A user-friendly description of the authority

	Transaction
	Int
	The transaction this log entry belongs to


8.2.4 Log$Change

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Previous
	Int
	The previous log entry for the affected object

	Name
	char
	The new name for the object

	Transaction
	Int
	The transaction this log entry belongs to


8.2.5 Log$Check

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Ref
	Int
	The database object referred to

	Name
	Char
	The original name of the constraint (possibly system supplied e.g. U(nnn))

	Check
	Char
	The source code for the check condition

	Transaction
	Int
	The transaction this log entry belongs to


8.2.6 Log$Column

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Table
	Int
	The defining position of the table

	Name
	Char
	The original name of the column

	Seq
	Int
	The ordinal position of the column (used in select *)

	Domain
	Int
	The associated domain (usually system supplied)

	Default
	char
	Source code for generating a default value

	NotNull
	Boolean
	Whether the column must have a non-null value

	Generated
	Boolean
	Whether GENERATED ALWAYS

	Transaction
	Int
	The transaction this log entry belongs to


8.2.7 Log$Conflicts

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Conflict
	Int
	A conflicting log entry


8.2.8 Log$Delete

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the delete operation

	DelPos
	Int
	The defining Pos for the record

	Transaction
	Int
	The transaction this log belongs to


8.2.9 Log$Domain

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Kind
	Char
	Domain,Edit, or Type

	Name
	Char
	The name of the domain or type

	DataType
	Int
	Describes the data type 

	DataLength
	Int
	Length of the data type

	Scale
	Int
	Scale factor for numerics

	Charset
	Char
	Character set identifier

	Collate
	Char
	The collation identifier

	Default
	Char
	String representation of default value

	StructDef
	Int
	Domain reference for MULTISET or ARRAY element, or Table reference for ROW or TYPE element

	Transaction
	Int
	The transaction this log entry belongs to


8.2.10 Log$Drop

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	DelPos
	Int
	The defining position of the object being deleted

	Transaction
	Int
	The transaction this log entry belongs to


8.2.11 Log$Edit

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the Alter Domain operation

	Prev
	Int
	The previous log record for the domain

	Transaction
	Int
	The transaction this log belongs to


8.2.12 Log$Grant

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Privilege
	Int
	Describes the privilege granted

	Object
	Int
	The object for which the grant is made

	Grantee
	Int
	The object gaining the privilege

	Transaction
	Int
	The transaction this log entry belongs to


A single Log$Grant entry may result in numerous alterations to the Sys$Privilege table.
8.2.13 Log$Index

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The name of the index (system generated, e.g. U(nnn))

	Table
	Int
	The table on which this index is defined

	Flags
	Int
	Describes this index, see 8.1.8

	Reference
	Int
	Identifies the referenced index

	Transaction
	Int
	The transaction this log entry belongs to


8.2.14 Log$IndexKey

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	ColNo
	Int
	The ordinal position of the column in the key

	Column
	Int
	Identifies the key column

	Transaction
	Int
	The transaction this log entry belongs to


8.2.15 Log$Insert

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Table
	Int
	The defining position of the table for the insert

	Transaction
	Int
	The transaction this log entry belongs to


8.2.16 Log$InsertField

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the current log entry

	ColRef
	Int
	Identifies the column

	Data
	Char
	String version of the data


8.2.17 Log$Modify

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	DefPos
	Int
	The defining position of the proc/func/method being modified

	Name
	Char
	The new name of the object

	Proc
	Char
	The modified source code of the proc/func

	Transaction
	Int
	The transaction this log entry belongs to


8.2.18 Log$Procedure

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The original name of the procedure

	Proc
	Char
	The original source code of the proc/func (including the formal params)

	Transaction
	Int
	The transaction this log entry belongs to


8.2.19 Log$Revoke

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Privilege
	Int
	Identifies the privilege being revoked

	Object
	Int
	The object to which the privilege relates

	Grantee
	Int
	The grantee from whom the privilege is being withdrawn

	Transaction
	Int
	The transaction this log entry belongs to


8.2.20 Log$Role

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The Name of the role

	Transaction
	Int
	The transaction this log entry belongs to


8.2.21 Log$Table

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The original name of the table

	Transaction
	Int
	The transaction this log entry belongs to


A table record is made for table and row type declarations.
8.2.22 Log$Transaction

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	NRecs
	Int
	The number of log entries following

	Time
	TimeStamp
	A timestamp

	User
	Int
	Identifies the current user

	Authority
	Int
	Identifies the current authority


8.2.23 Log$TransactionParticipant

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Host
	Char
	A participating host

	Path
	Char
	A participating database

	PPos
	Int
	The system key on the participating database


8.2.24 Log$Trigger

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The original name of the trigger

	Flags
	Char
	Before/After, Insert/Delete/Update

	Table
	Int
	The identifier of the table concerned

	OldRow
	Char
	Referencing identifier for old row

	NewRow
	Char
	Referencing identifier for new row

	OldTable
	Char
	Referencing identifier for old table

	NewTable
	Char
	Referencing identifier from new table

	Def
	Char
	The original code for the trigger including WHEN if defined

	Transaction
	Int
	The transaction this log entry belongs to


8.2.25 Log$TriggerUpdateColumn

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the trigger

	Column
	Int
	Column for Update


8.2.26 Log$Type

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the Domain log entry

	SuperType
	Int
	Identifies the defining log entry for the supertype


The type name is given in the Log$Domain table. The list of methods is in the Log$TypeMethod table. The list of members is in the Log$Table table. The method bodies are in the Log$Modify table.
8.2.27 Log$TypeMethod

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) identifying this method

	Type
	Int
	Identifies the defining log entry for the type

	MethodType
	Int
	See coding below

	Name
	Char
	The original name of the method

	Transaction
	Int
	The transaction this log entry belongs to


	Value
	MethodType

	0
	Instance

	1
	Overriding

	2
	Static

	3
	Constructor


Method bodies are given in the Log$Modify table.
8.2.28 Log$Update

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	DefPos
	Int
	Identifies the defining log entry for the record

	Table
	Int
	Identifies the table for the update

	Transaction
	Int
	The transaction this log entry belongs to


8.2.29 Log$User

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The name of the user (from the operating system)

	Transaction
	Int
	The transaction this log entry belongs to


8.2.30 Log$View

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Name
	Char
	The name of the View

	Select
	Char
	The original query expression defining the view

	Transaction
	Int
	The transaction this log entry belongs to


8.3 Table and Cell Logs

In auditing databases (section 3.5), it is convenient to be able to review all insert, update, and delete operations for a specific table, or for a specific cell. Pyrrho provides table and cell log facilities to do this, provisionally referred to as ROWS(nnnn) and ROWS(rrr,ccc) where nnnn is the numeric identifier of the table in question, rrr the defining position of the desired row, and ccc that of the desired column.

8.3.1 A Table Log

Pyrrho provides a table log facility, provisionally referred to as ROWS(nnnn) where nnnn is the numeric identifier of the table in question. ROWS(nnnn) is a table with the following fields:

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Action
	Char
	“Insert”,”Update”, or “Delete”

	Transaction
	Int
	The transaction this log entry belongs to

	ccccc
	Variant
	The value specified for the column with identifier ccccc


This feature allows data to be recovered even where columns have been removed (by ALTER TABLE or even DROP TABLE).

8.3.2 A Cell Log

Pyrrho provides a cell log facility, provisionally referred to as ROWS(rrr,ccc) where rrr is the defining position of the row containing the cell, and ccc the defining position of the column in question. ROWS(rrr,ccc) is a table with the following fields:

	Field
	DataType
	Description

	Pos
	Int
	System key (position information) for the log entry

	Value
	Variant
	The value

	StartTransaction XE "StartTransaction" 
	Int
	The transaction responsible for placing this value

	StartTimestamp XE "StartTimestamp" 
	Timestamp
	The timestamp for the StartTransaction

	EndTransaction XE "EndTransaction" 
	Int
	The transaction responsible for replacing this value

	EndTimestamp XE "EndTimestamp" 
	Timestamp
	The timestamp for the EndTransaction


This feature allows data to be recovered even where the row and/or even the column or table has been removed (by DELETE, or ALTER TABLE, or DROP TABLE). It also supplies information of interest in temporal tables.

8.4 Pyrrho Class Library Reference

Pyrrho.dll (namespace Pyrrho) defines (exports) the following classes, which are described in the following subsections:

SQL2003 API:

	Class
	Subclass of
	Description

	Date
	
	Data type used for dates.

	PyrrhoArray XE "PyrrhoArray" 
	
	Data type used for ARRAY and MULTISET if a column of type ARRAY or MULTISET has been added to the table. 

	PyrrhoConnect XE "PyrrhoConnect" 
	System.Data.IDbConnection
	Establishes a connection with a Pyrrho DBMS server, and provides additional methods and properties.

	PyrrhoInterval XE "PyrrhoInterval" 
	
	This class is used to represent a time interval

	PyrrhoRow XE "PyrrhoRow" 
	
	Data type used for ROW fields in a database table, a column of type ROW can be added to the table. (SQL2003)


Exceptions:

	Class
	Subclass of
	Description

	DatabaseError XE “DatabaseError” 
	System.Exception
	Used for “user” exceptions, e.g. a specified table or column does not exist, an attempt is made to create a table or column that already exists, incorrect SQL etc. The message property gives a readable explanation. The SQLSTATE string is also available: see section 5.6.7.

	TransactionConflict XE “TransactionConflict” 
	DatabaseError
	The action attempted has conflicted with a concurrent transaction, e.g. two users have attempted to update the same cell in a table. The changes proposed by the current transaction have been rolled back, because the database contents have been changed by the other transaction.


ASP.NET and Windows.Forms

	Class
	Subclass of
	Description

	PyrrhoDataAdapter
	System.ComponentModel.Component

System.Data.IDataAdapter
	See section 6.10 for an overview. 

	PyrrhoDataSource
	System.Web.UI.DataSourceControl
	See section 6.11 for an overview. 

	PyrrhoTable
	System.Data.DataTable
	See sections 6.10 and 6.11


PHP support:

	Class
	Subclass of
	Description

	ScriptConnect
	
	Provided for PHP support (section 6.12)

	ScriptReader
	
	Provided for PHP support (section 6.12)


8.4.1 Date

The methods and properties of Date XE "Date"  are:

	Method or Property
	Explanation

	DateTime date
	The underlying DateTime value

	Date(DateTime d)
	Constructor. 

	string ToString()
	Overridden: Formats the date using DateTime.ToShortDate() which is locale-specific


8.4.2 PyrrhoArray

The methods and properties of PyrrhoArray XE "PyrrhoArray"  are:

	Method or Property
	Explanation

	string kind
	“ARRAY” or “MULTISET”

	object[] data
	The values of the array or multiset. Note that the ordering of multiset values is non-deterministic and not significant.


8.4.3 PyrrhoConnect

PyrrhoConnect implements the IDbConnection interface. For the members of this interface, please see the .NET class library documentation. The only essential call is Open().

The additional methods and properties of PyrrhoConnect are as follows:

	Method or Property
	Explanation

	int Act(string sql)
	Convenient shortcut to construct a PyrrhoCommand and call ExecuteNonQuery on it. 

	void AwaitUpdates XE "AwaitUpdates" ()
	(Mobile edition.) Can be called from a thread in the mobile edition. Block until the enterprise server reports an update.

	System.Thread Callbacks XE "Callbacks" (string signatures)
	Start a thread to handle callbacks on this connection. Signatures is a comma-separated list of routine signatures (without the returns specification, but followed by FOR type if it is a method) that this thread will handle. PyrrhoConnect will locate the appropriate routines in the application using System.Reflection. See section 6.8.

Note: Once Callbacks() has been called on a Connection, it cannot be used for anything else.

	long CheckPoint()
	(Mobile edition.) Create a checkpoint for synchronising with the enterprise server.

	void Commit(byte[] bytes)
	(Mobile edition.) Remote data commit.

	void DetachDatabase XE "DetachDatabase"  (string pathname)
	(Enterprise and higher editions only.) Unload the named database from the server. The pathname must exactly match a pathname in the connection string. The connection is closed. (Not permitted for preloaded databases.) 

	PyrrhoTable ExecuteTable(string sql)
	Shortcut function which creates a Command and calls ExecuteReader. The returned value will be null if the sql is not a query (e.g. if sql is an insert statement).

	long ExecuteInsert XE "ExecuteInsert" (string sql)
	Obey an insert command and return the defining position of the new record.

	long GetDatabaseLength()
	(Enterprise edition.)

	String[] GetFileNames XE "GetFileNames" 
	(Personal and Professional editions only.) Returns the names of accessible databases.

	string GetIRI XE "GetIRI" ()
	If the current record is a row of a base table, this returns a persistent URL to access it. (This is a little out of place, but in ADO.NET there is at most one open DataReader, and having it here avoids the need to export a Pyrrho-specific DataReader.) See section 5.10.4.

	string GetIRI (int n)
	If the nth field of the current record is a cell of a base table, this returns a persistent URL to access it. (This is a little out of place, but in ADO.NET there is at most one open DataReader, and having it here avoids the need to export a Pyrrho-specific DataReader.) See section 5.10.4.

	PyrrhoConnect(string cs)
	Create a new PyrrhoConnect with the given connection string.

	void ResetReader XE "ResetReader" ()
	Repositions the IDataReader to just before the start of the data

	void SetAuthority XE "SetAuthority" (string s)
	Set the authority for the connection to the given identifier

	byte[] Synchronise(long start, long check, long end)
	(Enterprise edition)


The methods of using a PyrrhoConnect are described in section 6.10.
8.4.4 PyrrhoDataAdapter

PyrrhoDataAdapter implements the IDataAdapter interface. For the members of this interface, please see the .NET class library documentation. The only important one is IDataAdapter::Fill(DataSet dataset), which builds the DataTable the first time it is called, and if called again, may merge new rows in. The associated table is accessible as dataSet.Tables[0]. The adapter automatically handles inserts, deletes and updates as they are made on the DataTable. Some additional shortcut versions of this method are also available, and details are given below.

The added methods and properties of PyrrhoDataAdapter XE "PyrrhoDataAdapter"  are:

	Method or Property
	Explanation

	String ConnectionString
	Gets or sets the connection string for the data

	String SelectString
	Gets or sets the select string to obtain data

	int Fill(ref PyrrhoTable t)
	Creates or modifies a PyrrhoTable from the given select string. The adapter automatically handles inserts, deletes and updates as they are made on the DataTable.

	int Fill(DataGridView d)
	Creates or updates the DataGridView’s DataSource from the given select string. The adapter automatically handles inserts, deletes and updates as they are made on the DataTable.


8.4.5 PyrrhoDataSource

PyrrhoDataSource subclasses System.Web.UI.DataSourceControl. For the inherited members of this class, please see the .NET class library documentation.

The added methods and properties of PyrrhoDataSource XE "PyrrhoRow"  are:

	Method or Property
	Explanation

	String ConnectionString
	Gets or sets the connection string for the data source

	String SelectSql
	Gets or sets the select string to obtain data

	String TableName
	Gets or sets the name of the table

	IDictionary Types
	Gets or sets an IDictionary that maps column names to types

	String DBErrorMessage XE "DBErrorMessage" 
	Gets or sets an error message string

	String SQLSTATE XE "SQLSTATE" 
	Gets or sets the SQLSTATE string


8.4.6 PyrrhoInterval

The methods and properties of PyrrhoInterval XE “PyrrhoInterval”  are:

	Method or Property
	Explanation

	int years
	The years part of the time interval

	int months
	The months part of the time interval

	long ticks
	The ticks part of the time interval

	static long TicksPerSecond XE “TicksPerSecond" 
	Gets the constant number of ticks per second

	static string ToString()
	Formats the above data as e.g. (0yr,3mo,567493820000ti)


8.4.7 PyrrhoRow

The methods and properties of PyrrhoRow XE "PyrrhoRow"  are:

	Method or Property
	Explanation

	string[] columns
	The names of the fields of the row

	object[] data
	The values of the fields (may be DBNull)


8.4.8 PyrrhoTable

PyrrhoTable subclasses System.Data.DataTable. For the members inherited from DataTable, please see the .NET class library documentation. 

The added methods and properties of PyrrhoTable XE "PyrrhoInterval"  are:

	Method or Property
	Explanation

	String ConnectionString
	Gets or sets the connection string for the table. This value is copied in by the data adapter when it constructs a data table.

	String SelectString
	Gets or sets the select string for the table. This value is copied in by the data adapter when it constructs a data table.


A table is updatable if the PrimaryKey for the data table is not empty. This is filled in by the data adapter when it constructs a data table.

8.4.9 PyrrhoDbClient

This class implements the methods of the .NET WebClient class for the PyrrhoDb protocol, See section 6.13.

8.4.10 PyrrhoDbRequest

This class implements the methods of the.NET WebRequest class for the PyrrhoDb protocol.

9. Pyrrho Database File Format

The Pyrrho database file begins with a 4-byte key (777 encoded using Pyrrho’s integer format 9.1.1). The rest of the file consists of a sequence of variable length records, whose type is given by the opening byte, and whose contents are variable length.  Each record is made up of a set of data fields: some have fixed format, and some have variable format. The last record is an EndOfFile (see 9.2). This chapter of the booklet describes all of these details.

Apart from the EndOfFile marker, once any data has been written to the file it stays unchanged at the position it was written. Database files larger than 32GB are physically divided into 32GB segments. The data is continued logically from one file to the next without any additional formatting.

9.1 Data Formats

Byte and Unicode are the only predefined formats. It is assumed that all data files are dealt with by the operating system as a sequence of bytes. In particular, Pyrrho has its own way of encoding integers, floats etc, which are described below.

Pyrrho constructs a small set of data types from these, as follows:

	Code
	Data Type
	Format as

	1
	Time
	1 Integer (UTC ticks)

	2
	Interval
	3 Integers (year,month, ticks)

	3
	Integer
	1 byte (bytelength), bytelength bytes: see 9.1.1

	4
	Numeric
	2 Integers (mantissa, scale: see 9.1.2)

	5
	String
	1 Integer (bytelength), bytelength UTF-8 bytes

	6
	Date
	1 Integer (UTC ticks)

	7
	TimeStamp
	1 Integer (UTC ticks)

	8
	Boolean
	1 byte: T=1,F=0

	9
	User Defined Type
	2 Integers (typefpos,els), els variants: see 9.1.3

	10
	Blob
	1 Integer (bytelength), bytelength bytes

	11
	Row
	1 Integer (cols), cols variants: see 9.1.3

	12
	Multiset
	1 Integer (els), els variants: see 9.1.3

	13
	Array
	1 Integer (els), els variants: see 9.1.3


9.1.1 Integer format

Zero is encoded as 0 bytes. An integer that fits in a signed byte is encoded as 1 byte (i.e. -127.. 127).  Otherwise integers are encoded in unsigned bytes (radix 256), using as many as are required to ensure the first byte has a sign bit (0x80) if and only if the integer is negative.

Unless otherwise specified, unbounded precision is used for integer arithmetic. A string representation is used if required to return a very large integer value to the client.

9.1.2 Numeric format

Numeric format has one Integer for the mantissa, and 1 for the scale. If these are m and s respectively, then the value of the decimal is m*10-s . This format is used for both numeric/decimal and real quantities.

Unless constrained by precision specifications, addition and multiplication of numeric quantities uses 2040-bit precision, while division uses a default precision of 13 digits. If greater precision is required for division, it can be specified. It should be obvious that there are resource implications to using very large precision values. 

9.1.3 Variant format

This consists of a 1-byte code for the data type, followed by the corresponding format.

9.1.4 DataType

	Code
	DataType

	11
	ARRAY

	26
	BLOB

	27
	BOOLEAN

	37
	CHAR

	40
	CLOB

	65
	CURSOR

	67
	DATE

	135
	INTEGER

	137
	INTERVAL

	168
	MULTISET

	171
	NCHAR

	172
	NCLOB

	177
	NULL

	179
	NUMERIC

	203
	REAL

	257
	TIME

	258
	TIMESTAMP

	267
	TYPE

	356
	XML


9.2  Record formats

The record formats are as follows:

	Code
	Record type
	Format as 1 byte for Code and then

	
	Physical
	1 integer (transaction id) 

	0
	EndOfFile
	4 bytes (validation)

	1
	Table
	1 string (name), Physical

	2
	Authority
	2 strings (name, details), Physical

	3
	Column
	1 integer (table id), 1 string (name), 2 integer (position, domain id), Physical

	4
	Record (Insert)
	1 integer (table id), Fields (see 9.2.1), Physical

	5
	Update
	2 integers (replaced record id, other fields: see 9.2.2), Record

	6
	Change
	1 integer (table id), Table

	7
	Alter
	1 integer (replaced column id), Column

	8
	Drop
	1 integer (object id), Physical

	9
	Backup
	(no data)

	10
	Delete
	1 integer (record id), Physical

	11
	Edit
	1 integer (replaced domain id), Domain

	12
	Index
	1 string (name), 2 integers (table id, ncols), ncols integers (column id), 2 integers (flags, reference, see 9.2.4), Physical 

	13
	Modify
	1 integer (replaced id), 2 strings (name, body)

	14
	Domain
	1 string (name), 3 integers (dataType: see 9.1.3), 3 strings (charset, collate, default),  1 integer (table id), Physical

	15
	Check
	1 integer (object id), 2 string (name, check source), Physical

	16
	Procedure/Function
	2 strings (name, proc source), Physical

	17
	Trigger
	1 string (name), 3 integers (table id, triggertype, position, see 9.2.7), 1 variant (default), Physical

	18
	View
	2 strings (name, view source), Physical 

	19
	User
	1 string (name), Physical

	20
	Transaction
	4 integers (nrecs, authority id, user id, time)

	21
	Grant
	3 integers (privilege, see 9.2.6, object id, grantee id), Physical

	22
	Revoke
	Grant

	23
	Role
	1 string (name), Physical

	24
	Column2 XE "Column2" 
	1 string (default source), boolean (notNull), 2 strings (generate always, collate), Column

	25
	Type
	1 integer (under type id), Domain

	26
	Method
	2 integers (type id, methodtype: see 9.2.5), Procedure

	27
	Transaction2 XE "Transaction2" 
	Participants (see 9.2.3), Transaction


9.2.1 Fields information

The sequence of fields defining a record is formatted as 1 integer (nfields), nfields x (1 integer (column id), 1 variant (value)). Fields not defined by a record are not supplied.

9.2.2 Update information

The Update record contains in the base class (Record) part the fields that are updated. The other fields integer identifies the most recent previous Record or Update record with field information that remains current. The replaced record id is the original record that subsequent updates have altered.

9.2.3 Participant information

The sequence of fields for a distributed transaction is formatted as 1 integer (nothers), nothers x (1 string (database name), 1 integer (position)).

9.2.4 Index flags

The reference field is the id of a reference index.
	Flag
	Meaning

	1
	Primary Key

	2
	Foreign Key

	4
	Unique

	8
	Descending

	16
	 XE "Restrict Update" Restrict Update

	32
	 XE "Cascade Update" Cascade Update

	64
	 XE "Set Default Update" Set Default Update

	128
	 XE "Set Null Update" Set Null Update

	256
	 XE "Restrict Delete" Restrict Delete

	512
	 XE "Cascade Delete" Cascade Delete

	1024
	 XE "Set Default Delete" Set Default Delete

	2048
	 XE "Set Null Delete" Set Null Delete

	4096
	 XE "Foreign Position" Foreign Position


Not all flags are permitted or required: Restrict is a default, and Set Null is not permitted.
9.2.5  Method type

	Value
	Meaning

	0
	Instance

	1
	Overriding

	2
	Static

	3
	Constructor


9.2.6  Privilege flags

	Flag
	Meaning
	Flag
	Meaning

	0x1
	Select
	0x400
	Grant Option for Select

	0x2
	Insert
	0x800
	Grant Option for Insert

	0x4
	Delete
	0x1000
	Grant Option for Delete

	0x8
	Update
	0x2000
	Grant Option for Update

	0x10
	References
	0x4000
	Grant Option for References

	0x20
	Execute
	0x8000
	Grant Option for Execute

	0x40
	Owner
	0x10000
	Grant Option for Owner

	0x80
	Role
	0x20000
	Admin Option for Role

	0x100
	Usage
	0x40000
	Grant Option for Usage

	0x200
	Handler
	0x80000
	Grant Option for Handler


9.2.7  Trigger type

	Flag
	Meaning

	1
	Insert

	2
	Update

	4
	Delete

	8
	Before

	16
	After


10. Pyrrho Enterprise Edition

On Windows, the enterprise edition of Pyrrho runs as a service, that is, it is installed, configured, started and stopped using interfaces supplied by the operating system. This makes installation of Pyrrho a little more complicated, and it is supported by an installer application. As an alternative, there is a standard executable that runs as an ordinary application, and this can be used on Linux as a daemon. In the following notes, where required the instructions distinguish between the Windows Service version and the Executable version.

In addition to the start-up parameters described in section 3.1, the enterprise edition of PyrrhoSvr is informed about the location of database files. These should be placed in a subfolder of a folder owned by a special Pyrrho user account, normally the Local System account, that is not allowed to login to the operating system. The permissions on both of these folders should prevent any other users from reading or accessing the files within.

For large databases, it can take a significant time for the server to load the database file. Actual times vary with the hardware platform and the database concerned. On a PC, this can be up to 1 minute per 100MB, but is only required on or before the first time that a client connects to this database. Large databases, or any databases that are certain to be used, should be loaded on server start-up, so that the first client also gets instant response.

10.1 The Enterprise server account

By default, the Windows Service runs in the LocalService account. You can use the Windows Management Console to configure the service to use another account (use the Log On property page for Pyrrho DBMS service). If you decide to use this version of Pyrrho Enterprise edition, please note that on desktop machines, Windows restrictions prevent a service from using excessive amounts of CPU time.

The Executable version of Pyrrho Enterprise runs in the account that launches it. In the following sections, this account is referred to as the Pyrrho Enterrpise account.

The Pyrrho Enterprise folder is the folder that from which the Pyrrho Enterprise executable was launched, or the folder into which the Windows Service was installed (by default this is c:\Program Files\University of Paisley\Pyrrho Enterprise). 

10.2 The configuration file

The enterprise edition of PyrrhoSvr collects the following initialisation information from a file (SvrConfig.xml) in its folder:

· The memory option (-m in the command line, section 3.1)

· The port to use for the Pyrrho service

· Whether to provide an http service, and if so, which port to use, and whether to trust the user identities on this port (may be okay on a firewall-protected port on an intranet)

· The names of database files to be loaded when the server starts up , and whether they are read only (default is Write=true)

· Whether the server should allow database creation (default false), and if not, the name of a user who is allowed to create databases (default is the Pyrrho Enterprise account)

· The user id of the Investigator if configured

The following sample indicates the xml format used:

<PyrrhoSvr MinimiseDiskReads="true" Port="5433" Http="58080" HttpTrust="true" AllowCreate="false" DatabaseCreator=”MAIN\S_PYRRHO”>

<Database Write="true" File="Squash"/> 


<Database Write="false" File="Meteo">



<Table DefPos="20671" Column="22835" Forget="2002-01-01"/>


</Database>
...
</PyrrhoSvr>
The following table shows a complete list of available element names and attributes (the PyrrhoSvr element is the root element in the file):

	Name
	A/E
	In
	Explanation
	Edition

	AllowCreate XE "AllowCreate" 
	A
	PyrrhoSvr
	“true” to allow any user to create local databases. (Default “false”: users must specify a precreated database file)
	ED

	Column XE "Column" 
	A
	Table
	The defining position of the temporal column. 
	ED

	Creator XE "Creator" 
	E
	PyrrhoSvr
	One Creator element is provided for each user allowed to create local databases (Ignored in Enterprise edition if AllowCreate is set to true.)
	ED

	Database XE "Database" 
	E
	PyrrhoSvr
	One Database element is provided for each database specification
	EMD

	DefPos XE "DefPos" 
	A
	Table
	The defining position of the temporal table
	ED

	File XE "File" 
	A
	Database
	Database file name, without extension, case sensitive.
	EMD

	Forget XE "Forget" 
	A
	Table
	Date (in SQL format, e.g. "2003-06-29") giving an earliest date for temporal records in this table. Records before this date will not be loaded.
	ED

	Http XE "Http" 
	A
	PyrrhoSvr
	Port to provide a Pyrrho Http service. If not specified the service is not started.
	EM*

	HttpTrust XE "HttpTrust" 
	A
	PyrrhoSvr
	“true” to trust user identity in Http server variables (default “false”). 
	EM*

	Host XE "Host" 
	A
	Database
	PyrrhoDB host for a remote database. This attribute is normally used in the mobile edition. See section 11.3
	EMD

	Host
	A
	PyrrhoSvr
	The licensed host for the cluster
	D

	Init XE "Init" 
	A
	Database
	Filename (including extension) containing locally saved readonly version of a remote database. The remote host will be used for synchronisation and updates.  This attribute is normally used in the mobile edition. See section 11.3
	EMD

	Investigator XE "Investigator" 
	A
	Database
	Identifies a user allowed to examine logs
	ED

	MinimiseDiskReads XE "MinimiseDiskReads" 
	A
	PyrrhoSvr

Database
	Equivalent to the –m command line flag. (Default "false")
	EMD

	Port XE "Port" 
	A
	Database
	PyrrhoDB port for a remote database. (Sec 11.3)
	EMD

	Port
	A
	PyrrhoSvr
	Port to provide PyrrhoDB service (default “5433”)
	EMD

	Preload XE "Preload" 
	A
	Database
	"true" to preload the database on server startup (default "false" on Mobile edition, "true" on Enterprise edition)
	EM*

	Table XE "Table" 
	E
	Database
	Temporal Tables can be skimmed by forgetting records older than a given date or timestamp. The Defpos, Column and Forget attributes should be specified.
	ED

	User XE "User" 
	A
	Creator
	User identity allowed to create new databases
	EMD

	Write XE "Write" 
	A
	Database
	“true” to allow updates, "false" if database is readOnly (default=”true”)
	EM*


* For the Datacenter edition (D) this facility is configured in the DBMSConfig.xml file, see section 12.2

10.3 The Pyrrho Enterprise Manager and Utilities

Pyrrho Enterprise Manager is an enterprise version of Pyrrho Manager (section 4.3), which allows the contents of the Pyrrho server folder to be examined, and database files to be imported and exported to secure storage. It is normally run by an administrator, who is therefore able to copy files into and from the Pyrrho Enterprise folder. It includes a file comparator for verifying a database against a previous version, secure creation, detaching, backup, and recovery of database files. Pyrrho Enterprise Manager also is able to view the security and log information for all databases (whereas PyrrhoMgr limits this functionality to the owner of a database).

The enterprise functions added to PyrrhoMgr are described in the following sections. Comparator, backup (checkpoint), synchronise, and commit can all operate by using a byte stream interface to the Enterprise server, and this enables them to work on live databases. Command line utilities to perform similar tasks on backup copies, or user-owned databases in other folders, are also available.

10.3.1 Open Database button

There is an additional button on the bottom right of the form. Clicking this brings up a file open dialog. If a Pyrrho database file is selected, then a new icon is added to the treeview representing a connection to that database, which can be operated the same way as connections to databases in the server folder (as described in section 4.3.4).

10.3.2 Database comparator

Once a database has been selected, the Verify .. function allows a file to be selected. The utility then checks that both files are valid Pyrrho database files, and that they coincide completely, or up to a certain date, and whether this represents the whole of either or both files.

As explained in section 3.5, activity in a Pyrrho database causes new data to be appended to the database file, and makes no changes to the earlier parts. This means that all backup copies of a database file will agree with the current file up to their end-of-file marker. The newer file will be longer, corresponding to the addition of new transaction information.

The purpose of the database verifier is to check that the historical record has not been tampered with. (Pyrrho has other mechanisms which aim to guarantee this, which are described elsewhere.) 

We suppose you have a backup copy which is on secure media and is known to be valid. There are two cases according as the database you want to compare it with is (a) online or (b) offline.

(a) You can use Enterprise Manager or a command-line tool (PyrrhoCompare).

In Enterprise Manager, a database icon has a child node called Verify.. Double-clicking this icon brings up a file selection dialogue that allows a database file to be selected (which should not be attached to the server). This file is then verified against the live database, and the results are displayed in a dialogue box.

The command line PyrrhoCompare utility has the following syntax:


PyrrhoCompare [–h:host] [–p:port] dbname file
By default, the host is localhost, and port is 5433. File should be supplied with its .pfl extension. The result of the comparison is given as a one-line console message.

(b) If both databases are available as files, use PyrrhoCompareFiles. This has the following syntax:


PyrrhoCompareFiles oldfile newfile

Both files should be supplied with the .pfl extension. The result of the comparison is given as a one-line console message.

10.3.3 Secure creation

By default, the enterprise edition does not allow database creation except by a single named user, specified in the configuration file (see section 10.1). There are two cases

(a) The database is to belong to a named user. If a user wants a database constructed in a network share that they own, it is simplest for them to use Pyrrho personal edition to do this (so that the database file belongs to them), and then get the enterprise server to open the new database. If you want this user’s database to be placed in the enterprise server’s folder, do so with enterprise privileges.

(b) The database should be owned by the Pyrrho Enterprise account, and be placed in the server folder. Then you can either use Enterprise Manager, or a command-line utility. However in order to use these tools, 

· Database creation must be enabled (AllowCreate=”True”) or

· You must be running the DatabaseCreator account (see section 10.2).

In Enterprise Manager, the localhost node shows the list of databases in the server’s folder. Add a new entry to this list with the required name, and then click on any other cell in the table. This will create a new database in the server’s folder.  

The command line PyrrhoCreate utility has the following syntax:


PyrrhoCreate [–h:host] [–p:port] dbname
This will create a database called dbname.pfl in the server’s folder. The database file will belong to the Pyrrho Enterprise account. The database will contain as its owner user the user who is running the utility (e.g. the DatabaseCreator).
If a pathname is provided, it will be interpreted relative to the server’s folder. It is not usually useful to give a pathname, unless subfolders are in use. 

10.3.4 Detaching a database

This process was described in section 6.10.5. It closes a single database currently being accessed by the server, without disturbing the users of other databases.

Enterprise Manager or the command-line utility PyrrhoDetach can be used for this.

In Enterprise Manager, the database node has a “Detach” child. Double-clicking this node detaches the database from the server and has the side effect of aborting any current transactions on this database.

The command-line PyrrhoDetach utility has the following syntax


PyrrhoDetach [–h:host] [–p:port] dbname
A pathname is valid here, and will be interpreted relative to the server’s folder. 

Detaching does not destroy the database, but the server will not re-establish a connection to the database for 100 seconds. This is intended to allow time for the administrator to move or replace the database. The administrator should deal with such databases one at a time.

10.3.5 Database Backup

It is recommended to take a backup copy of each database periodically and store it in a secure place. If the server is stopped, it is sufficient to copy the database file dbname.pfl to a secure location. The tools described in this section perform this task without stopping the server.

In Enterprise Manager, a database icon has a child node called Backup.. Double-clicking this icon brings up a file selection dialogue that allows a backup file to be selected (which should not be attached to the server). This file is then verified against the live database.

PyrrhoBackup creates a backup copy of a database with a given name and in a specified folder.


PyrrhoBackup [–h:host] [–p:port] dbname file
10.3.6 Recovering an earlier database state

Where one or more transactions have been committed, and the database file is correctly written, but the administrator wishes to restore the database to a former state, this is possible, though deprecated (after all, committing a transaction is supposed to guarantee that the transaction is durable).

You can examine an earlier database state by giving a Stop time in the connection string. Opening a database with a stop time creates a read-only connection to the database.

The command line utility PyrrhoBackup has an additional parameter that achieves this:


PyrrhoBackup [–h:host] [–p:port] [-s:date] dbname file
To prevent fraud, the above utility cannot be used if the database has been tampered with. The last good backup or checkpoint should be used.

10.4 The Event log

The operating system’s event log will record any messages from the PyrrhoSvr. These will be generated in the event of faulty configuration information, or errors when accessing the storage medium. The event log also contains specially-formatted messages used in automatic database recovery.

10.4.1 Automatic Database Recovery

Certain types of hardware failure during transaction commit can leave the database file improperly terminated. Provided the file system itself remains undamaged, the next time the file is opened Pyrrho (enterprise and datacenter editions) will automatically recover the database, using file-termination data held in the event log on the server machine. This should cause at most one transaction to be lost: where the transaction data or file terminator was only partially written at the time of the hardware failure.

If the event log is not available, then the last good backup should be used.

11. Pyrrho Mobile Edition

The Personal and Professional editions of Pyrrho can be operated on laptops, PDAs and phones that have the .NET framework. For these editions, the database is on the mobile device.

The Pyrrho Mobile edition is intended for databases kept on an enterprise location, and where the volume of updates is small, but where mobile computer users wish to browse the database, commit changes, and synchronise with the database’s current state.

The mobile device (laptop, PDA, phone) may have a backup version of the database, and runs its own (slave) copy of the Pyrrho server. This minimises network traffic on start-up, as the headquarters copy is needed only for transactions that have been committed (by all users) since the backup was made.

When the mobile user commits a database change, this is transmitted to the headquarters server.

The Mobile edition can also manage local databases.

11.1 Obtaining Pyrrho Mobile edition

To use Pyrrho Mobile Edition you must have a license (key.dat file) for the Professional edition. The license is based on the DNS name or IP/NAT address of the mobile device, and is contained in a key.dat file which must be in the same folder as the server on the mobile device.

The primary version of the databases needs to be on an enterprise or datacenter edition of Pyrrho, which is named in the configuration file of the Mobile edition.

11.2 Configuring Pyrrho Mobile edition

In addition to the key.dat file, the mobile edition has a SvrConfig.xml file that contains data about remote databases:

· The name of the database

· The name of the initialisation file if any: this can be a pathname. The file must be a backup of the remote database (this is not checked, and the local server may crash if the initialisation file is not valid).

· The host on which the master copy is located

· The port used by the enterprise server (default: 5433)

The following sample shows the XML format used:

<PyrrhoSvr>
  <Database File="dbname" Init="dbname.pfl" Host="hostaddress" Port="5433" />

</PyrrhoSvr>
11.3 Using Pyrrho Mobile edition

From the viewpoint of the application the remote database is accessed just as if it was a local database. The connection string is for localhost, and gives the remote database name.

The first time the database is accessed after the mobile device is restarted, the initialisation file if any is read, and the enterprise server is contacted to synchronise the database with the master copy. The enterprise server checks that the mobile user is a registered user of the database, and that the mobile host is configured for remote access. The local server remains in contact with the enterprise server to receive updates: if the connection is broken the mobile device will retry every minute.

When the application seeks to commit changes to the remote database, it does so by sending the data to the enterprise server. Transaction failure can occur (as for local transactions) if conflicting updates have been committed to the server.

The mobile device’s local server maintains an open connection to the remote server, which it uses to update its data as other users commit transactions. If this connection goes down for any reason, the server attempt to reconnect every minute.

Applications using remote databases should check database availability, using the RemoteOK field in the Sys$Connection table, and avoid starting updates on unavailable servers, since these are likely to get stuck at the commit point.
12. Pyrrho Datacenter Edition

The Pyrrho datacenter edition is intended for installation on a computer cluster. A special administrator program (called PyrrhoDBMS), coordinates the activity of a number of PyrrhoSvr instances, and acts as the contact point for clients of the DBMS. 

The PyrrhoDBMS service is accessed by clients in exactly the same way as described for PyrrhoSvr in earlier sections of this booklet. 

Each server instance tells PyrrhoDBMS which databases it has loaded and which it can write to. At most one server instance can have write access to a database, but PyrrhoDBMS ensures that other servers know which server is providing the commit service for the database. 

Databases can be configured to be preloaded before any connections are accepted. Each preloaded database file should be writable by at most one server instance (none if updates are not permitted). 

Client connection requests are routed by PyrrhoDBMS to the server instance best able to deal with it. The algorithm for selection takes account of preloading of databases and the number of open connections from PyrrhoDBMS to the server.

PyrrhoDBMS is normally started after all server instances have been started up, but this only affects preload configuration. At least one server must be available (and any preloading completed) before the service can be used. PyrrhoDBMS can be restarted with loss only of client connections. Any server can be restarted with loss only of transactions in progress on that server, but if the server is providing the commit service for some databases, then no transactions can be committed until it becomes available once more. PyrrhoDBMS polls unavailable servers at 30 sec intervals to try to re-establish the service it provides.

12.1 PyrrhoDBMS installation

The individual server instances are not contacted directly by clients, as the PyrrhoDBMS service acts as a proxy. It is normal to hide the server instances by appropriate network configuration of the cluster, or by using different port numbers. 

It is essential that all of the PyrrhoSvr instances use a common (shared) location for the database files: the default configuration assumes that this is the folder containing the PyrrhoSvr.exe, the license file key.dat, and configuration file SvrConfig.xml. Subject to this requirement of a shared folder for databases, the Pyrrho datacenter edition can be used on any local network. As in the Enterprise edition, database names can be pathnames.

The Datacenter edition uses the host that runs the PyrrhoDBMS service as the host name of the cluster for licensing purposes.
12.2 PyrrhoDBMS configuration
PyrrhoDBMS can be installed for command line operation or as a service. (As noted above, the command line version is recommended for high volumn scenarios). The following parameters are configured using a configuration file DBMSConfig.xml:

· The ports for the PyrrhoDBMS service (5433 is the default), and the Http service (default: none)

· For each PyrrhoSvr instance, the host and port (default 5433), Note that all servers must be specified in the configuration file.

· For each database to be preloaded on a server instance, the name of the database file, whether the server instance provides the commit service (Write), and the client service (Read). At most one seriver instance can specify Write="true" for a database.

Here is an indication of the xml format used:

<PyrrhoDBMS Port="5433" Http="8080"> 

<Server Host="192.168.1.1" Port="58987" />

<Server Host="192.168.1.2" >


<Database File="Squash" Read="false" Write="true" />

</Server> ...

</PyrrhoDBMS>

The root element is PyrrhoDBMS.
	Name
	A/E
	Where
	Explanation

	Database
	E
	Server
	Specification for preloading a database on a cluster member

	File
	A
	Database
	The case-sensitive name of the database, without extension. (This can be a pathname relative to the shared database folder)

	Host
	A
	Server
	The host name of the cluster member

	Http
	A
	PyrrhoDBMS
	The port for the Pyrrho HTTP service (default="8080")

	HttpTrust
	A
	PyrrhoDBMS
	Whether to trust HTTP user identities (default="false")

	Port
	A
	PyrrhoDBMS
	The port for the PyrrhoDB service (default="5433")

	Port
	A
	Server
	The port for the PyrrhoDB service on a clutser member. This must match the PyrrhoSvr configuration for the cluster member

	Read
	A
	Database
	"true" if the cluster member provides a SQL or SPARQL service on this database (default="true")

	Server
	E
	PyrrhoDBMS
	Specification for configuring a cluster member.

	Write
	A
	Database
	"true" if the cluster member provides a commit service for this database (default="false")


By specifying Read="false"and Write="true" a server can be configured to provide only the transaction commit service (no client access). This can be useful in high-volume scenarios.

Database files that are not preloaded are opened for writing by the first server instance that connects to them, and for reading by subsequent servers. Depending on server availability, PyrrhoDBMS may load a database onto additional servers. PyrrhoDBMS keeps track of which databases are available on the different server instances, and notes the cost of loading the database on a additional instance.

If a server instance has updates to commit to a database that it does not have write access to, it does all the transaction processing as normal, but on commit it forwards the update data to the server that is able to commit the data, and the client waits for the success or failure of the remote commit.

12.3 PyrrhoSvr Datacenter Edition

The datacenter edition of PyrrhoSvr is configured and installed in the same way as for the enterprise edition (section 10.1). The Port of the server instance must be specified if it is different from the default 5433. 

The key.dat file for the PyrrhoDBMS service is located in the shared folder, as it is checked not by PyrrhoDBMS but by the server instances.

Other useful attributes that might be specified in the SvrConfig.xml file are AllowCreate, Creator, and MinimiseDiskReads, and specific tables can be configured with the Forget attribute. Database preloading should not be in the SvrConfig.xml file, since this file is normally shared by all server instances. Instead Database preloading is controlled by the DBMSConfig.xml file, as described in the previous subsection.

The Investigator attribute can be specified if required for a specific database, but this should be regarded as an exception to normal configuration, since it implies preloading of the database.

12.4 The event log
The system event log for the PyrrhoDBMS host will record any errors that arise from faulty configuration information, or network failure when accessing server instances. If the Datacenter Edition is run from the command line, this information is also displayed on the console.

12.5 Enterprise Tools and the Datacenter Edition

The Pyrrho Enterprise tools described in chapter 10 can be used with the Datacenter Edition.

13. Troubleshooting

This section reviews a number of circumstances in which a database can become unusable. The safeguards that cause a database to be marked unusable are there to protect business operations as far as practicable against hardware errors or malicious activity.

Databases should not become unusable during normal operation. Any performance issue of this sort should be notified immediately to malcolm@pyrrhodb.com, so that this issue can be resolved. 
Suggested additions to this section will be very welcome. The following checklist is intended for use where a correctly installed Pyrrho installation ceases to work.

	Symptom
	Possible causes
	Section

	Key file does not match host name; or missing or ambiguous host name
	Host has been renamed or Dns entries have been changed
	13.3

	
	The server executable and key file are for different editions of Pyrrho
	13.7

	Application crashes or malfunctions
	The PyrrhoLink.dll it uses needs to be updated to match the PyrrhoSvr
	13.7

	A database will not load
	The database file may have been removed, renamed, or damaged
	13.1-3

	
	Databases that have participated in multiple transactions have been restored (e.g. from backup) to an inconsistent state
	13.1

	A user can no longer access or modify data
	The user may be accessing the data from another user’s account, or from an environment that reports the user name differently
	13.5

	
	The user’s (or role/authority) permissions have been modified
	5.5

	Committed transactions appear to have been rolled back
	An operator has restored a database from a backup to a state prior to the transaction, or otherwise replaced the database file
	13.1


13.1 Destruction and restoration

It is fundamental to database design that transactions are durable once committed, with results that can only be changed by subsequent transactions. There are some interventions at the operating system level that violate this principle, which are possible even with Pyrrho.

· Destruction of the entire database through deletion of the database file, formatting or disposing of the storage media etc.

· Restoration of a database from a backup copy

These actions will result in some or all work recorded in the database to be lost. Resotration from backup can restore transactions up to the time of the backup, but transactions committed after the last backup will be permamently lost.

There are other interventions that can make the database temporarily inaccessible: such as stopping the server, or altering access permissions on the file or the network. These are not regarded as changing the durability of the transaction. The notes in this section assume that such matters can be resolved in the usual ways, such as restoring the accessibility of the database file, restoring network connectivity, etc.

Some hardware failures can cause a single transaction being commited at the time of the failure to be lost (section 13.2). Renaming of hosrs or database files can also cause temporary accessibility difficulties and these are examined below (13.3). 

Additional complications arise if a deleted or restored database has participated in distributed (multi-database) transactions as in this case all databases involved must be restored to a mutually conistsnet state. Manual tools and operations can assist with this, as described in 13.x below.

13.2 Hardware failure during commit

If a hardware failure occurs during the commit phase of a transaction, the client or application will be told that the connection has been broken but may not know whether the transaction commit was completed before communication with the server was broken.

When the database is reloaded, it is very likely that either (a) the transaction will have been forgotten (rolled back) or (b) the transaction will be found in its entirety. If a part of the transaction data was actually written to physical media, then recovery is required. Enterprise and Datacenter editions will use information recorded in the server’s event log to allow the transaction to roll back automatically. 

If the server version is Personal or Professional, or if the event log is also damaged, then automatic recovery is not possible, and manual recovery is required. See 13.5 below.

13.3 Alternative names for a database file

It should never be necessary to rename a database file. For the Enterprise edition, the database name can be the pathname of the file. In any event, the name used to create the database is used to create a default authority for the database. If you use a different name to access the database, you can supply the old name as an Authority in the connection string, unless you are using an authority that has been explicitly created in the database.

Database file names are also used in configuration files, so these should be checked following renaming of one or more database files. If the database has remote clients (e.g. mobile clients), their configuration files will also need to be updated.

13.4 Changes to the database file

Pyrrho will detect if a database file has been tampered with or accidentally damaged by another program (or, unusually, a hardware malfunction). In this case the database file should be restored to the last checkpoint or backup using the manual restore procedures below.

13.5 User identity and database migration

It is deliberately made difficult in Pyrrho for a user to pretend to be someone else: the user’s name is supplied by the operating system. If a database file is installed in a new context, or a user’s identity is changed, it may be difficult for an application to have the correct user identity for contacting the database.

If the user identity (or previous context) is still available, it can be used to grant permissions to the new user identities.

Otherwise, use investigation of the log files to find out the user identities configured in the database, and temporarily install a user identity that is recognised by the database (preferably that of the database owner) and grant the permissions that the new user identities require.

13.6 Renaming of a database host

Most users of the Personal edition just use “localhost” as the host name, so the actual name of the host is not important. This section is really aimed at the other editions.

When the Pyrrho DBMS starts up, it finds the hostname of the server from the operating system using the Domain Name Service (DNS), and this name is checked on Professional, Enterprise and Datacenter editions for a valid license file. If the DNS information is changed, it can happen that Pyrrho uses a different name, and in that case, either a new license file is required, or the DNS information must be changed so that Pyrrho uses the previous name.

Hostnames are also used in configuration files, so these should be checked following renaming of one or more database hosts. If the database has remote clients (e.g. mobile clients), their configuration files will also need to be updated.

When the host is referred to in a connection string, any of the current aliases for the host can be used, or the IP address string. If the name used in the connection string is no longer valid, the application will need to be rebuilt with the correct name.

13.7 Server upgrade

Replacing the Pyrrho server with a new version is generally trouble-free. However, the PyrrhoLink.dll version number (e.g. 1.0) should match the server version, and copies of this file are often placed the same folder as a database application executable. 

If you upgrade to a new edition of the Pyyrho Server, e.g. from Personal to Professional, Professional to Enterprise, etc, you will need to acquire a new license key file for your host from our commercial partners.
14. End User License Agreement

14.1 Binary distribution: all editions except Open Source

You may use and redistribute the client library (PyrrhoLink.dll) in any product. You may copy and distribute this booklet in its entirety.  

You are hereby granted a non-transferable, royalty-free license to use the software described in this manual in accordance with its provisions. Under no circumstances will Malcolm Crowe or the University of Paisley be liable for any loss or damage however caused.

This software is and remains intellectual property of the University of Paisley, protected by copyright and applicable patent legislation. You are not permitted to redistribute, modify, decompile or reverse-engineer it, or include the server code in any product, without express permission of the University of Paisley. 

14.2 Source distribution: Open Source Pyrrho edition

You may use and redistribute the client libraries (OSPLink.dll and/or PyrrhoJC.jar) in any product. You may copy and distribute this booklet in its entirety.  

You are hereby granted a non-transferable, royalty-free license to use the software described in this manual in accordance with its provisions, and to view and test the source code, including modifications or incorporation in other software. Under no circumstances will Malcolm Crowe or the University of Paisley be liable for any loss or damage however caused.

This software is and remains intellectual property of the University of Paisley, protected by copyright and applicable patent legislation. You are not permitted to redistribute, or include any server code in any product, without express permission of the University of Paisley. 

References

Crowe, M. K. (2006): A simple approach to Temporal Data in Relational DBMS (to be publ)

Floridi, Luciano: Sextus Empiricus: The transmission and recovery of Pyrrhonism (American Philological Association, 2002) ISBN 0195146719
Laertius, Diogenes (3rd cent): The Lives and Opinions of Eminent Philosophers, trans. C. D. Yonge (London 1895)

SQL2003: ISO/IEC 9075-2:2003 Information Technology – Database Languages – SQL – Part 2: Foundation (SQL/Foundation); ISO/IEC 9075-4:2003: Information Technology – Database Languages – SQL – Part 4: Persistent Stored Modules; ISO/IEC 9075-14:2003: Information technology — Database languages — SQL — Part 14::XML-Related Specifications (SQL/XML) (International Standards Organisation, 2003)

Index to Syntax



A
AbsoluteValue
75

Action
70

Alias
73

AllowCreate
111

AllowDatabaseCreation
92

Alter
67

AlterCheck
68

AlterColumn
68

AlterDomain
67

AlterMember
68

AlterTable
68

AlterType
68

Annotation
60

Any
75

ASC
73

Assignment
77

At
75

AttributeSpec
79

Authority
47

AUTHORITY
66

Avg
76

AwaitUpdates
104

B
BEGIN
66, 78

Between
75

BETWEEN
72

BinaryOp
74

BLOB
71

Body
69

BooleanExpr
75

BooleanFactor
75

BooleanTerm
75

BooleanTest
75

BooleanType
71

BREAK
66

C
Call
77

Callbacks
104

Cardinality
77

Cascade Delete
94, 109

Cascade Update
94, 109

CaseStatement
77

Cast
76

Ceiling
76

CHAR_LENGTH
76

CharacterType
71

CheckConstraint
68

CLOB
71

Close
77

Coalesce
76

Collate
71

COLLATE
67

Collect
77

Cols
69

Column
60, 111

Column2
108

ColumnConstraint
69

ColumnConstraintDef
69

ColumnDefinition
69

ColumnRef
74

CommandText
48

Commit
49

COMMIT
66

Comparison
75

CompOp
75

CompoundStatement
78

Condition
78

ConditionList
78

CONSTRAINT
68

CONSTRUCTOR
67

Corelation
76

Count
76

Covariance
76

Create
68

Creator
111

CROSS
73

CUME_DIST
76

Current
75

CursorSpecification
71

D
Database
111

DatabaseError
103

DataReader
48

Date
103

DateTimeField
74

DateTimeFunction
77

DateTimeType
71

DBErrorMessage
105

DBNull
48

Declaration
78

DEFAULT
67

DefinedType
71

DefPos
111

DeletePositioned
71

DeleteSearched
71

DENSE_RANK
76

DESC
73

DetachDatabase
104

DISTINCT
72

DomainDefinition
69

DropAction
69

DropObject
69

DropStatement
69

E
Element
77

EndField
74

EndTimestamp
102

EndTransaction
102

Entity
60

EntityExistsException
60

EntityManager
60

EntityManagerFactory
60

EntityNotFoundException
60

EntityTransaction
60

Event
69

Every
75

EXCEPT
72

Exclusion
72

ExecuteInsert
104

ExecuteNonQuery
48

ExecuteReader
48

Exists
75

Exponential
76

EXTERNAL
69

Extract
76

ExtractField
76

F
Fetch
78

FetchType
60

FieldCount
48
File
111

Files
47

FIRST
73

FloatType
71

Floor
76

Fold
77

Foreign Position
109

Forget
111

ForStatement
78

FromClause
72

FULL
73

FuncOpt
75

FunctionCall
75

Fusion
77

G
GetFieldType
48

GetFileNames
104

GetIRI
104

GetName
48

Grant
70

Grantee
70

GranteeList
70

GroupByClause
72

Grouping
76

GroupingSet
72

GroupingSpec
72

H
HANDLER
70

HandlerType
78

HavingClause
72

Host
47, 111

Http
111

HttpTrust
111

I
Id
60

IDataReader
48

IDbCommand
48

IDbTransaction
49

IfStatement
78

In
75

IndexLimit
92

Init
111

INNER
73

Insert
71

INSTANCE
67

IntegerType
71

Intersect
77

INTERSECT
74

INTERVAL
74

IntervalField
71, 74

IntervalQualifier
74

IntervalType
71

Investigator
111

ITERATE
67

J
JoinColumn
60

JoinColumns
60

JoinedTable
73

JoinTable
60

JoinType
73

L
Label
78

LAST
73

LEAVE
67

LEFT
73

LengthExpression
76

Like
75

Literal
74

Lob
60

LobType
71

Locale
47

LOCALTIME
77

LoopStatement
78

M
ManyToMany
60

ManyToOne
60

Maximum
76

Member
68, 75

Method
67

MethodCall
78

MethodType
67

MinimiseDiskReads
92, 111

Minimum
76

Modulus
76

MULTISET
71, 73

MultisetOp
74

N
NamedValue
79

Namespace
78

NATURAL
73

NaturalLogarithm
76

NCLOB
71

NonUniqueResultException
60

NoResultException
60

Null
75

Nullif
76

NULLS
73

NumericType
71

NumericValueFunction
75

O
ObjectName
70

ObjectPrivileges
70

OCTET_LENGTH
76

Of
75

OneToMany
60

OneToOne
60

Open
78

OptimisticLockException
60

OrderBy
60

OrderByClause
73

OrderSpec
73

OrdinaryGroup
72

OUTER
73

OVERRIDING
67

P
Parameter
67

Parameters
67

PartitionClause
72

PERCENT_RANK
76

Percentile
76

PersistenceException
60

PersistenceProperty
60

PersistenceUnit
60

Port
47, 111

Position
76

PowerFunction
76

Predicate
75

Preload
111

PrimaryKeyJoinColumn
61

PrimaryKeyJoinColumns
61

Privileges
70

Provider
47

PyrrhoArray
103, 104

PyrrhoConnect
103

PyrrhoDataAdapter
105

PyrrhoInterval
103, 105, 106

PyrrhoRow
103, 105, 106

Q
Query
61

QueryExpression
72

QueryPrimary
72

QuerySpecification
72

QueryTerm
72

R
Rank
76

Rdf
67

REAL
71

ReferentialAction
69

RefObj
69

Regression
77

Rename
70

Repeat
78

Representation
69

ResetReader
105

Restrict Delete
94, 109

Restrict Update
94, 109

RETURN
67

Revoke
70

RIGHT
73

Rollback
49

ROLLBACK
66

RollCube
72

Routine
70

RowNumber
77

S
SearchCondition
73

SecondaryTable
61

SecondaryTables
61

SegmentationBits
92

SelectItem
72

SelectList
72

SelectSingle
78

Set
77

Set Default Delete
94, 109

Set Default Update
94, 109

Set Null Delete
94, 109

Set Null Update
94, 109

SetAuthority
105

SetFunction
77

SIGNAL
67

simple table query
72

Some
75

Sql
66

SQLSTATE
105

SqlStatement
66

SquareRoot
77

StandardType
71

StartField
74

StartTimestamp
102

StartTransaction
102

Statement
66

Statements
78

STATIC
67

StringValueFunction
77

Substring
77

Sum
77

System.Type
48

T
Table
61, 111

TableClause
69

TableConstraint
69

TableConstraintDef
69

TableExpression
72

TableFactor
73

TableReference
72

Target
77

Temporal
61

TEMPORAL
73

TemporalType
61

TicksPerSecond
106

TIMESTAMP
74

Transaction2
108

TransactionConflict
103

TREAT
73

Trigger
69

TriggerCond
69

Trim
77

Type
70

U
UNBOUNDED
72

UNICODE
71

UNION
72

Unique
75

UniqueConstraint
61

UNNEST
73

UpdatePositioned
71

UpdateSearched
71

uri
66

User
111

UserFunctionCall
78

V
Value
73

ValueRowSetLimit
92

VALUES
73

VariableRef
74

Variance
77

W
WhereClause
72

While
78

window function
75

WindowBetween
72

WindowBound
72

WindowClause
72

WindowDef
72

WindowDetails
72

WindowFrame
72

WindowSpec
76

WindowStart
72

WithinGroup
76

Write
111

X
xml
66

XmlAgg
77

XMLComment
78

XMLConcatenation
78

XMLElement
78

XMLForest
79

XMLFunction
78

xmlname
66

XMLNAMESPACES
68

XMLNDec
68

XMLOption
68

XMLParse
79

XMLRoot
79

XMLType
71

XPath
79




Computing and Information Systems Technical Reports is edited by M. K. Crowe and published by the University of Paisley, Paisley PA1 2BE, Scotland.

© University of Paisley, 2007 

All authors of these technical reports are entitled to copy or republish their own work in other journals or conferences. Permission is hereby granted to others for the publication of attributed extracts, quotations and citations of material from these reports. No other mode of publication or copying of any part of this publication is permitted without the explicit permission of the University.

The School of Computing at the University of Paisley has 55 academic staff and 24 researchers, covering the range of subjects from Computing Science to Business Information Systems. This mix of interests offers an opportunity for the development of novel approaches, and the reinterpretation and further development of traditional methodologies taking into account the rate of change in the computing technology, and its usage and impact in organisations. The guiding ethos of these technical reports reflects that of the School.

The editorial address is Prof. M K Crowe, University of Paisley PA1 2BE; tel (+44) 141 848 3300; fax (+44) 141 848 3542.





























































� See SQL2003-02 11.50 Syntax Rules 16.






126

_1199615214.vsd
Double-click here and type 
notes.






Database File (.pfl)


Database File Segments (.n.pfl)


Physical records (Log$)


Logical Database


SQL processor


Applications


OS tools


Enterprise tools


Client tools


File segments are used for databases larger than 4GB.
Enterprise tools provide facilities for secure backup and mobile checkpoints



