
[image: image1.jpg]UNIVERSITY

QofPAISLEY

Computing and Information Systems Technical Reports

No. 39

Malcolm Crowe
An Introduction to the Source Code of the Pyrrho DBMS
[image: image2.jpg]

January 2007

1An Introduction to the Source Code of the Pyrrho DBMS

51. Introduction

62. Overall structure of the DBMS

62.1 Architecture

62.2 Key Features of the Design

93. Basic Data Structures

93.1 B-Trees

93.1.1 B-Tree structure

93.1.2 ATree

103.1.3 TreeSpec

103.1.4 SlotEnumerator

113.1.5 ATree Subclasses

113.2 Link

113.3 Integer

123.4 Decimal

123.5 StringCollation

123.6 Physical (level 2)

123.6.1 Physical subclasses (Level 2)

133.7 PhysBase (level 2)

133.7.1 VirtBase

133.7 DBObject (level 3)

143.7.1 Database object types (level 3)

143.8 Database

153.8.1 LocalTransaction

163.9 Connection

163.10.1 Transaction

163.10.2 Transaction Subclasses

163.11 Context

173.11.1 Context Subclasses

184. Locks, Integrity and Transaction Conflicts

184.1 Locking

184.1.1 DataFile locks

184.1.2 “consistency” lock

194.1.3 “PhysBase” lock

194.1.4 “databaselist” lock

194.2 Transaction conflicts

194.2.1 ReadConstraints (level 4)

194.2.2 Physical Conflicts

204.2.3 Entity Integrity

214.2.4 Referential Integrity (Deletion)

214.2.5 Referential Integrity (Insertion)

224.3 Connections to more than one database

224.3.1 Committing a distributed transaction

234.3.2 Verifying a distributed transaction

245. Parsing, Renaming, and Execution

245.1 Lexical analysis

255.2 Parsing

255.2.1 Execute status and parsing

255.2.1 Parsing routines

255.3 Checking Dependencies

265.3.1 Rename Transactions

265.3.2 Drop Transactions

275.4 Stored procedures

275.4.1 Activation

275.4.2 Executables

285.4.3 Subclasses of Executable

296. Query Processing

296.1 Query Classes

296.1.1 SqlValue

296.1.2 Search

306.2 Overview of Query Analysis

306.3 RowSets

316.4 Columns and Selects

316.4.1 Column

316.4.2 Select

316.5 Aggregation

326.5.1 The Group By clause

326.5.2 Group Specification

326.5.3 The Grouping Row Set

326.5.4 Window Specifications

336.5.5 Windowed Row Sets

347. Permissions and the Security Model

347.1 Authority

347.1.1 The default authority for a database

347.2 Effective permissions

357.3 Implementation of the Security model

357.3.1 The Privilege enumeration

357.3.2 Checking permissions

357.3.3 Grant and Revoke

367.3.4 Permissions on newly created objects

367.3.5 Dropping objects

378. XML, RDF and SPARQL

378.1 Support for RDF graphs

378.2 Support for RDF syntax

388.3 The Sparql engine

399. The Java Persistence Query Language

399.1 The Entity model

399.2 Specialised SQL2003 classes

4110. The Pyrrho protocol

4110.1 Establishing the connection

4110.2 Sending the connection string

4110.3 Normal traffic

4210.3.1 Column

4210.3.2 Row

4310.4 Exceptions

4310.5 Callbacks

4310.5.1 Annotation format

4411. The HTTP service

4411.1 Output classes

4411.2 The Web Service classes

4411.3 XSL Database Reports

4511.3.1 A sample database report

4511.3.2 Requesting a report

4511.3.3 Report header and footer

4511.3.4 XSL Stylesheets

4611.3.5 Parameterised reports

4712. References

1. Introduction

For a general introduction to the Pyrrho DBMS, including its aims and objectives, see the manual that forms part of the distribution of Pyrrho DBMS (this is referred to below as “the Manual”).
From Version 1.3 of the Pyrrho DBMS, an Open Source Edition is being maintained alongside the production editions. The Open Source Edition has functionality equivalent to the Professional edition of Pyrrho DBMS, but has different encryption algorithms for the security features. It remains intellectual property of the University of Paisley, and while you are at liberty to view and test the code and incorporate it into your own software which you can use on a royalty-free basis, the terms of the license prohibit you from creating a competing product or from reverse engineering the production editions.

I am proud to let the community examine this code: I am conscious about how strongly programmers tend to feel about programming design principles, and the particular set of programming principles adopted here will please no one. But, perhaps surprisingly, the results of this code are robust and efficient, and the task of this document is to try to exoplain how and why.
Much of the structure and functionality of the Pyrrho DBMS is documented in the Manual. The details provided there include the syntax of the languages used (SQL2003, Java Persistence Query Language, and SPARQL), and the structure of the binary database files. Usage details from the manual will not be repeated here. In some cases some paragraphs from the user manual provide an introduction to sections of this document.

This document aims to provide a gentle introduction for the enthusiast who wishes to explored the source code, and see how it works. The topics covered include the workings of all levels of the DBMS (the server) and the structure of the client library OSPLink.dll. Many people will find the sections on the implementation of SPARQL and the Java Persistence Query Language particularly interesting.

The reader of this document is assumed to be a database expert and competent programmer. The DBMS itself has over 450 C# classes, spread over 97 source files in 6 namepsaces. The Excel worksheet Classes.xls lists all of the classes together with their location, superclass, and a brief description. The code itself is intended to be quite readable, and has “Intellisense” comments for all classes, methods, fields, and properties.
This document avoids having a section for each class, or for each source file. Either of those designs for this document would result in tedious repetition of what is in the source. Instead, the structure of this document reflects the themes of design, with chapters addressing the role in the DBMS of particular groupings of related classes or methods.
2. Overall structure of the DBMS
2.1 Architecture

The following diagram, from the Manual, shows the DBMS as a layered design. There is basically a namespace for each of four of the layers, and two other namepsaces, Pyrrho and Pyrrho.Common:
	Namespace
	Title in the diagram
	Description

	Pyrrho
	
	The top level contains only the protocol management files Start.cs, HttpService.cs, Sparql.cs and Crypt.cs

	Pyrrho.Common
	
	Basic data structures: Integer, StringCollatioon, BTree, and the lexical analyzer for SQL.

	Pyrrho.Level1
	Database File, Database File Segments
	Binary file management. Caching and buffering

	Pyrrho.Level2
	Physical Records
	The Physical Database layer: PhysBase.cs and classes for physical records.

	Pyrrho.Level3
	Logical Database
	Database.cs, LocalTransaction.cs and classes for database objects.

	Pyrrho.Level4
	SQL processing
	Connection.cs, Transaction.cs, Query.cs, Parser.cs etc

[image: image3.emf]Database File (.pfl)

Database File Segments (.n.pfl)

Physical records (Log$)

Logical Database

SQL processor

Applications OS tools Enterprise tools Client tools

File segments are used for databases larger than 4GB.

Enterprise tools provide facilities for secure backup and mobile checkpoints

2.2 Key Features of the Design
The following features are really design principles used in implementing the DBMS:
1. Transaction commits correspond one-to-one to disk operations: completion of a transaction is accompanied by a force-write of a database record to the disk. There is a 5-byte end-of-file marker which is overwritten on each record, but otherwise the physical records once written are immutable. Deletion of records or database objects is a matter for the logical database, not the physical database. This makes the database fully auditable: the records for each transaction can always be recovered along with details about the transaction (the user, the timestamp, the role of the transaction).

2. Because data is immutable once recorded, the physical position of a record in the data file (its “defining position”) can be used to identify database objects and records for all future time (as names can change). Needless to say, the current structure of the database object, or the current values of a record, may well depend on subsequent data, which should be examined for relevant alterations and updates (or even drops and deletes). Pyrrho threads together the physical records that refer to the same defining position to facilitate backward searching in the database file and forward searching in the corresponding memory structures.
3. Data structures in the higher levels of the database are frequently built from immutable elements. For example, if an entry in a list is to be changed, what happens at the data structure level is that a replacement element for the list is constructed and a new list descriptor which accesses the modified data, while the old list remains accessible from the old list descriptor. In this way creating a local copy or snapshot of the database (which occurs at the start of every transaction) consists merely to making a new header for accessing the lists of database objects etc. As the local transaction progresses, this header will point to new headers for these lists (as they are modified). If the transaction aborts or is rolled back, all of this data can be simply forgotten, leaving the database unchanged. With this design total separation of concurrent transactions is achieved, and local transactions always see consistent states of the database.
4. When a local transaction commits, however, the database cannot simply be replaced by the local transaction object, because other transactions may have been committed in the meantime. If any of these changes conflict with data that this transaction has read (read constraints) or plans to modify (transaction conflict), then the transaction cannot be committed. If there is no conflict, the physical records proposed in the local transaction are relocated onto the end of the database. Thus the defining positions of any new data will be different from those created in memory for the local transaction: the entire local transaction structure is therefore forgotten even in the case of a successful commit. Instead, the database is updated by reading the new records back from the disk (or disk cache). Thus all changes are applied twice – once in the local transaction and then after transaction commit – but the first can be usefully seen as a validation step, and involves many operations that do not need to be repeated at the commit stage: evaluation of expressions, check constraints, execution of stored procedures etc.
5. These approaches to the design have some strange effects. For example, any data structures that are not transaction-specific must avoid maintaining pointers to the logical level structures such as Table, TableColumn, since these may no longer be current for the next transaction. The current versions must be obtained afresh from the Database data structure, either by name or by defining position as appropriate.
6. Because of transaction separation, checking for transaction conflicts cannot be done at the level of the logical database (Level 3). It is done at the physical level (Level 2), with the help of a set of rules for what constitutes a conflict. Data relating to read constraints needs to be passed down to level 2 in a special data structure since these do not correspond to proposed changes to the database.
7. Data recorded in the database is intended to be non-localised (e.g. it uses Unicode with explicit character set and collation sequence information, universal time and date formats), and machine-independent (e.g. no built-in limitations as to machine data precision such as 32-bit). Default value expressions, check constraints, views, stored procedures etc are stored in the database in SQL2003 source form and reparsed when required. This has the advantage that changes consequential on renaming of objects can be supported at the logical database level, where the edits can be applied to the source forms in memory.

8. The database implementation uses B-Trees throughout (note: B-Trees are not binary trees). Lazy traversal of B-Tree structures (enumeration) is used throughout the query processing part of the database. This brings dramatic advantages where search conditions can be propagated down to the level of B-Tree traversal.
9. The code makes extensive use of partial evaluation, so that for example parameterless Column value expressions (e.g. col.Value) or Search conditions (e.g. where.Match) are affected by movement of an enumerator (e.g. enu.MoveNext()). The effect of this relatively unusual programming technique is to mimic the behaviour of SQL expressions: thus a RowSet is a Row (a set of Columns) and an Enumerator (which modifies the values of the row columns as it moves). This matches well with the top-down approach to parsing and query processing that is used throughout Level 4 of the code.
10. The aim of SQL query processing is to bridge the gap between bottom-up knowledge of traversable data in tables and joins (e.g. columns in the above sense) and top-down analysis of value expressions. Analysis of any kind of query goes through a set of stages: (a) source analysis to establish where the data is coming from, (b) selects analysis to match up references in value expressions with the correct columns in the sources, (c) conditions analysis which examines which search and join conditions can be handled in table enumeration, (d) ordering analysis which looks not only at the ordering requirements coming from explicit ORDER BY requests from the client but also at the ordering required during join evaluation and aggregation, and finally (e) RowSet construction, which in many cases can choose the best enumeration method to meet all the above requirements.
11. As a practical matter it is convenient to allow multi-database connections. For example this facilitates analysis or modelling of a database using temporary tables, without adding such temporary tables to the business database. Because user defined types will be defined in one or other database, this means that concepts such as Column and DataType now need to record the database ordinal in the connection (often called dbx in the code) in addition to the defining position. Since the database ordinal is connection specific, this merely represents an annoying twist on note 5 above: there are numerous classes starting with Dbx that implement this layer.

3. Basic Data Structures

In this chapter we discuss some of the fundamental data structures used in the DBMS. The data structures in this chapter have been selected because they are sufficiently complex or unusual to require a discussion.
3.1 B-Trees

Almost all indexing and cataloguing tasks in the database are done by BTrees. These are basically sorted lists of pairs (key,value), where key is comparable. In addition, sets and partial orderings use a degenerate sort of catalogue in which the values are not used (and are all the single value true).
There are several subclasses of BTree used in the database: Some of these implement multilevel indexes. BTree itself is a subclass of an abstract class called ATree. The BTree class provides the main implementation.

3.1.1 B-Tree structure

The B-Tree is a standard, fully scalable mechanism for maintaining indexes. B-Trees as described in textbooks vary in detail, so the following account is given here to explain the code.

A B-Tree is formed of nodes called Buckets. Each Bucket is either a Leaf bucket or an Inner Bucket. A Leaf contains up to N pairs (called Slots in the code). An Inner Bucket contains Slots whose values are pointers to Buckets, and a further pointer to a Bucket, so that an Inner Bucket contains pointers to N+1 Buckets altogether (“at the next level”). In each Bucket the Slots are kept in order of their key values, and the Slots in Inner buckets contain the first key value for the next lower-level Bucket, so that the extra Bucket is for all values bigger than the last key.
The value of N in Pyrrho is currently 32: the performance of the database does not change much for values of N between 4 and 32. For ease of drawing, the illustrations in this section show N=4.
The BTree itself contains a root Bucket and some other data we discuss later.

The BTree dynamically reorganizes its structure so that (apart from the root) all Buckets have at least N/2 Slots, and at each level in the tree, Buckets are either all Inner or all Leaf buckets, so that the depth of the tree is the same at all values.
3.1.2 ATree
The basic operations on B-Trees are defined in the abstract base class ATree: ATree.New, ATree.Add, ATree.Remove etc. Static methods are used for most operations because a new header structure is created if anything is modified (according to principle 2.2.3). So, for example to add a new entry to a list of tables, we have code such as

ATree.Add(ref tables, name, tb);

The basic format here is ATree.Add(ref Tree, Key, Value) . For a multilevel index, Key can be a Link (section 3.2).

The following table shows the most commonly-used operations:

	Name
	Description

	long Count
	The number of items in the tree

	object this[key]
	Get the value for a given key

	bool Contains(key)
	Whether the tree contains the given key

	static New(TreeSpec)
	A new empty tree of the given sort

	static Add(ref T, Key, Value)
	For the given tree T, add entry Key,Value .

	static Update(ref T, Key, Value)
	For the given tree T, update entry Key to be Value

	static Remove(ref T, Key)
	For the given tree T, remove the association for Key.

Note that even where words like Update are used, any Tree is immutable: in particular the Update operation returns a new Tree sharing many of its immutable elements with the old one.
For multivalued tree types (see below) an additional parameter can be supplied to the last two methods, e.g.

Static ATree.Update(ref T,Key,OldValue,Value)

This replaces the association (Key,OldValue) with (Key,Value) (there may be other values for the given Key).

3.1.3 TreeSpec

There are many different sorts of B-Tree used in the DBMS. The TreeSpec construct helps to keep track of things, especially for multilevel indexes (which are used for multicolumn primary and foreign keys).
TreeSpec has the following structure:

	Name
	Description

	KeyType keyType
	Unknown, Column, Fields, Name, Long, Uid, Trigger, Select, Row

	ValueType valueType
	Unknown, Physicals, Long, Objects, Strings, Compound, ReadConstraint, PartialP, PartialR, Row, Count

	object column
	For KeyType.Column: a level 3 TableColumn

	TreeSpec next
	The TreeSpec for the next level of the index if any

For example, the lists of database objects (tables, views, columns etc) at Level 3 of the code have TreeSpec(KeyType.Name, ValueType.Objects). Most trees in the code are hardwired and only partly use this classification: the ValueType.Uknknown is used frequently.
The following value types are implemented using special tree classes:

	ValueType
	Description

	Compound
	MTrees are for compound primary and foreign keys.

	PartialP
	PPTrees are for referential integrity checking. The index is implemented as a two level tree: (key,(pos,true)) where pos is the referencing physical record. This helps to ensure that a row is not removed from the referenced table until there are no referencing rows. If the foreign key is compound then the last two levels of the index are handled as a PPTree.

	PartialR
	PRTrees are used for (partial) ordering of rows. The index is implemented as a two level tree (orderingcols, (row,true))

Finally, numerous trivial tree types are implemented for reasons of efficiency, handling the cases of Empty trees and trees with just one entry.

3.1.4 SlotEnumerator
Enumerating the entries of a tree is done using the SlotEnumerator class. Like any .NET IEnumerator implementation, this has the following basic operations:

	Name
	Description

	bool MoveNext()
	move to the next entry if any: return false if there is no next entry

	object Current
	this has the form Slot(CurrentKey,CurrentValue) here (but see below)

	void Reset()
	start the enumeration again

However, for reasons to do with multilevel indexes the properties CurrentKey and CurrentValue are returned as Links.

There are currently 86 different SlotEnumerator implementations in the DBMS, including 26 special enumerators for system tables, and 32 for log tables, and 12 for joins of various sorts.

3.1.5 ATree Subclasses
The BTree class provides the basic tree implementation that is used by all the tree types in the DBMS. It also provides a standard mechanism for enumerating the Keys and Values of a tree, which allows the use of C#’s foreach statement for Slots, Keys and Values. Other implementations provide special actions on insert and delete (e.g. tidying up empty nodes in a multilevel index).
There are just 7 ATree implementations:
	Name
	BaseClass
	Description

	BTree
	ATree
	The main implementation of B-Trees, providing for split and coalesce of Buckets

	MTree
	BTree
	For multilevel indexes

	PPTree
	BTree
	For partial orderings such as references indexes (see PartialP above)

	PRTree
	BTree
	For partial orderings of rows, used in query processing

	Trivial
	ATree
	A tree with one entry does not need all the above machinery

	TrivialP
	ATree
	A PartialP tree with one entry

	TrivialR
	ATree
	A PartialR tree with one entry

The trivial implementations save a lot of time and space because most "partial" orderings in practice are nearly total. TrivialP and TrivialR differ from Trivial in that on insertion of a second entry the appropriate nontrivial B-Tree implementation must be returned.
3.2 Link

The Link is a simple linked-list structure. Its only interest here is that all Links in a linked list are treated as immutable, and are not changed once constructed. The following operations are most commonly used:

	Name
	Description

	new Link(H,T)
	Create a new link in the list (T is a Link or null).

	static Link Reverse(L)
	Create a new list consisting of the elements of L in reverse order

	static Link Append(L1,L2)
	Create a new list consisting of the elements in L1 followed by the elements in L2.

	Link Remove(X)
	Create a new list consisting of all the elements of this, but omitting X

	bool Contains(X)
	Whether the list contains X

	int Count
	The number of elements in the list

	object this[i]
	The i-th element in the list.

3.3 Integer

All integer data stored in the database uses a base-256 multiple precision format, as follows: The first byte contains the number of bytes following.

	#bytes (=n, say)
	data0
	data1
	…
	data(n-1)

data0 is the most significant byte, and the last byte the least significant. The high-order bit 0x80 in data0 is a sign bit: if it is set, the data (including the sign bit) is a 256s-complement negative number, that is, if all the bits are taken together from most significant to least significant, that data is an ordinary 2s-complement binary number. The maximum Integer value with this format is therefore 22039-1 .
Some special values: Zero is represented as a single byte (0x00) giving the length as 0. -1 is represented in two bytes (0x01 0xff) giving the length as 1, and the data as -1. Otherwise, leading 0 and -1 bytes in the data are suppressed.
Within the DBMS, the most commonly used integer format is long (64 bits), and Integer is used only when necessary.
With the current version of the client library, integer data is always sent to the client as strings (of decimal digits), but other kinds of integers (such as defining positions in a database, lengths of strings etc) use 32 or 64 bit machine-specific formats.

The Integer class in the DBMS contains implementations of all the usual arithmetic operators, and conversion functions.

3.4 Decimal

All numeric data stored in the database uses this type, which is a scaled Integer format: an Integer mantissa followed by a 32-bit scale factor indicating the number of bytes of the mantissa that represent a fractional value. (Thus strictly speaking “decimal” is a misnomer, since it has nothing to do with the number 10, but there seems no word in English to express the concept required.)

Normalisation of a Decimal consists in removing trailing 0 bytes and adjusting the scale.
Within the DBMS, the machine-specific double format is used.

With the current version of the client library, numeric data is always sent to the client in the Invariant culture string format.

The Decimal class in the DBMS contains implementations of all the usual arithmetic operations except division. There is a division method, but a maximum precision needs to be specified. This precision is taken from the domain definition for the field, if specified, or is 13 bytes by default: i.e. the default precision provides for a mantissa of up to 2103-1 .

3.5 StringCollation

All character data is stored in the database in Unicode UTF8 (culture-neutral) format. Domains and character manipulation in SQL can specify a “culture”, and string operations in the DBMS then conform to the culture specified for the particular operation.
The .NET library provides a very good implementation of the requirements here, and is used in the DBMS. Unfortunately .NET handles Normalization a bit differently from SQL2003, so there are five low-level SQL functions whose implementation is problematic.
3.6 Physical (level 2)
Physical is the base class used for actual items stored in the database file. There is an enumeration called Physical.Type, whose values are actually stored in the database, that discriminates between the different sorts of Physical record.

During Commit, the sequence of Physical records prepared by a LocalTransaction is actually written (serialised) to durable media. (A LocalTransaction deals with a particular database: in general, a transaction might involve changes to more than one database: see section 2.8 of the manual.)

Each Physical type contributes a part of the serialization and deserialisation implementation. For example, an Update Physical contributes some fields, and calls its base class Record to continue the serialization, and finally Record calls Physical’s serialization method. During serialization relocation is required since Physicals in a LocalTransaction refer to each other through their defining position, and this defining position is not known until serialization begins.

The Reloc class assists with relocation during serialization. It contains a linked list of new and old positions, and is used when serialising any field that contains a defining position. All newly created Physicals are given special values above 0x400000000000 for their defining position. If the value being serialised is in Reloc’s list, the listed new value is used instead. Values are added to Reloc’s list in one one place in the code: the Physical.Commit method adds the current position in the datafile as the defining position of that Physical.
3.6.1 Physical subclasses (Level 2)
The type field of the Physical base class is an enum Physical.Type, as shown here:
	Code
	Physical.Type
	Class
	Base class
	Description

	0
	EndOfFile
	EndOfFile
	Physical
	Checksum record at end of file

	1
	PTable
	PTable
	Physical
	Defines a table name

	2
	PAuthority
	PAuthority
	Physical
	An authority and description

	3
	PColumn
	PColumn
	Physical
	Defines a TableColumn

	4
	Record
	Record
	Physical
	Records an INSERT to a table

	5
	Update
	Update
	Record
	Records an UPDATE of a record

	6
	Change
	Change
	Physical
	Renaming of non-column objects

	7
	Alter
	Alter
	PColumn2
	Modify column definition

	8
	Drop
	Drop
	Physical
	Forget a database object

	9
	Checkpoint
	Checkpoint
	Physical
	A synchronization point

	10
	Delete
	Delete
	Physical
	Forget a record from a table

	11
	Edit
	Edit
	PDomain
	ALTER DOMAIN details

	12
	PIndex
	PIndex
	Physical
	Entity, unique, references

	13
	Modify
	Modify
	Physical
	Change proc, method, trigger,check,view

	14
	PDomain
	PDomain
	Physical
	Define a Domain

	15
	PCheck
	PCheck
	Physical
	Check constraint for something

	16
	PProcedure
	PProcedure
	Physical
	Stored procedure or function

	17
	PTrigger
	PTrigger
	Physical
	Define a trigger

	18
	PView
	PView
	Physical
	Define a niew

	19
	PUser
	PUser
	Physical
	Record a user name

	20
	PTransaction
	PTransaction
	Physical
	Record a transaction

	21
	Grant
	Grant
	Physical
	Grant privileges to something

	22
	Revoke
	Revoke
	Grant
	Revoke privileges

	23
	PRole
	PRole
	Physical
	Record a role name

	24
	PColumn2 XE "Column2"
	PColumn2 XE "Column2"
	PColumn
	For more column constraints

	25
	PType
	PType
	PDomain
	A user-defined structured type

	26
	PMethod
	PMethod
	PProcedure
	A method for a PType

	27
	PTransaction2 XE "Transaction2"
	PTransaction2 XE "Transaction2"
	PTransaction
	Distributed transaction support

3.7 PhysBase (level 2)
The PhysBase class treats the database simply as a sequence of Physicals: it is for Level 3 of the DBMS to organize these into database objects of the usual kinds, and deal with logical matters such as transaction, update, alter, drop, constraints etc. The PhysBase allows any Physical to be retrieved using the Get() method, which is also provided by the level 3 Database.
Pyrrho maintains a static collection (phyBases[]) of PhysBase instances. This is convenient for implementing remote databases and in allowing pathnames, since databases do not necessarily correspond to data files in a database folder.

There are 3 separate mechanisms for minimising disk reads. The first operates at level 1, where a command line flag can request that all disk files are completely cached in memory.

There are two caching mechanisms provided at level 2: a very small hashtable of size 1024 which is used when objects are actually written to disk. The second level 2 mechanism uses the VirtBase subclass of PhysBase, and is described next.

3.7.1 VirtBase

This is implemented as a subclass of PhysBase. VirtBase maintains a list of Physicals created during the transaction. This enables a complicated interrelated set of new records to be checked before commit. VirtBase is created by the constructor in LocalTransaction and is completely forgotten at the end of a transaction.
3.7 DBObject (level 3)
Many Physical records define database objects (e.g. tables, columns, domains, user-defined types etc). For convenience, there is a base class that gathers together two important aspects common to all database object types: (a) object permissions (grant/revoke) and (b) renaming and drop dependencies. We explain these aspects briefly later on in this section, but the main discussion of these topics must wait for a later chapter (see Sections 8 and 5 of this document).
The database maintains a direct index for each kind of database object. In practice, though, during database operations it is in general unknown which database (in a multi-database connection) defines any given named database object, so database objects are normally looked up using methods provided by the Context object (see below). The database also maintains a reverse index: GetObject() returns the DBObject defined at a given defining position in the PhysBase.
When there are changes to database objects (e.g. a new column for a table), the changed database object needs to be notified to the Database’s lists. Such modifications are handled by the Database.Change method.

Each DBObject maintains a list of users (or roles) who have been granted access permissions on it. In practice, this list mostly consists of authorities as it is bad practice to grant object privileges directly to users. Role objects will have actual users in the corresponding list.
Finally, if a DBObject is being renamed or dropped, some action needs to be taken in all the database structures that refer to this object. During LocalTransactions, such dependencies are checked for RESTRICT/CASCADE behaviour. During database load, the changes need to be made to level 3 data structures, and this is done by means of a special DropTransaction or RenameTransaction. This mechanism obliges each database object type to give a way of enumerating its dependent objects so these can be checked.
3.7.1 Database object types (level 3)
The subclasses of DBObject are mostly discriminated by the type field of DBObject, which is a DBTree value. The DBTree values determine which list is used for listing the objects, and UDTypes share the domains list with Domains, and Views share the tables list with Tables, so these do not have separate DBTree values.
	DBTree enum
	Class
	Base Class
	Description

	Unknown
	
	
	default value

	Tables
	Table
	DBObject
	Level 3 table information: columns, checks, triggers, rows (unless indexed)

	Domains
	Domain
	DBObject
	Level 3 domain information: checks, defaults etc

	Indexes
	Index
	DBObject
	Entity, references and unique constraints

	Users
	User
	DBObject
	

	Procedures
	Procedure
	DBObject
	Procedure/function parameters and execution

	Roles
	Role
	DBObject
	Level 3 roles have privileges

	Authorities
	Authority
	Role
	

	Backups
	
	
	Checkpoints do not have a level 3 class

	Checks
	Check
	DBObject
	

	Columns
	TableColumn
	DBObject
	TableColumns have check constraints

	Triggers
	Trigger
	DBObject
	

	Methods
	Method
	Procedure
	

	
	UDType
	Domain
	UDTypes have a list of methods

	
	View
	DBObject
	

The operation of these objects is explained in later chapters, e.g. chapter 4 and 5.
3.8 Database

The DBMS maintains a static list of databases that it has loaded. Thus when a client requests a connection to a database (in the static method Database.GetDatabase()) this list is checked for the given name. In Enterprise and higher editions the name may be a path name, also, if the database has been loaded in a special way (e.g. a StopTime specifying time travel to the past), a special name will be allocated to avoid confusion for clients who just want the usual version. The database will be loaded if necessary: this means reading the entire contents of the database file (up to the StopTime if specified) and creating the level 3 data structures in memory.
The level 3 Database structure maintains the following data:

· Its name, usually just the name of the database file (not including the extension), but see above in this section

· The associated PhysBase (level 2 physical database) as described in section 3.6

· The current position in the associated database file (level 1)
· The id of the user who owns the database
· The lists (trees) of database objects defined for this database, as follows:

	Name
	Class
	Description

	objects
	DBObject (or subclasses)
	all of the DBObjects defined for the database including TableColumns and CheckConstraints

	tables
	Table, View
	the base tables and views in the database (not System or Log tables)

	domains
	Domain (or UDType)
	the domains defined in this database (standard Domains such as char are added as needed)

	indexes
	Index
	used to implement primary key, references, and unique constraints

	procedures
	Procedure
	procedures and functions defined in the database

	users
	User
	the owner of the database and any one who has been granted privileges on the database.

	roles
	Role (or Authority)
	the roles or authorities defined in this database

	triggers
	Trigger
	the triggers defined in this database

	backups
	Checkpoint
	recorded checkpoints (for remote commit)

Although it makes the implementation awkward, tables and views must share the same namespace.
Note that database objects such as columns, check-constraints and triggers are listed under their parent object (Table, Domain, etc).

The main functionality provided by the Database class is as follows:

	Name
	Description

	AddDelete, AddRecord, AddUpdate
	Implemented by LocalTransaction overrides (section 3.8.1)

	Change
	Store an updated database object in the above structures

	Get, GetCurrent, GetObject
	Reconstruct Physicals, Record and objects from defining positions

	GetTable, etc
	Retrieve Level3 objects by name from the Database’s lists

	Install
	Install a Physical record in the level 3 structures

	Load
	Load a database from the database file

	static GetDatabase(name…)
	Return a Database object from the list, loading it if required

3.8.1 LocalTransaction

LocalTransaction is implemented as a subclass of Database. Every connection that accesses a database sees not the database itself, but a LocalTransaction based on it. Because of the policy used for immutable data elements, creating the local transaction needs only a very small amount of new memory, as it shares all its data structures with the Database.

In addition to the data for the Database, the LocalTransaction adds

· the user and authority database objects for the local transaction

· the Transaction parent

· the underlying Database object so that it can do a Commit when the time comes

· a snapshot of the current position in the database at the start of the transaction

· a list of Physicals that the transaction proposes to commit
· a list of ReadConstraints for tables accessed during the transaction

The main functionality provided by the LocalTransaction class is as follows:

	Method
	Description

	AddDelete, AddRecord, AddUpdate
	Verify the change and add to list of Physicals

	Commit1, Commit2, Commit3
	See section 4.1

	readConstraint
	See section 4.2

AddRecord, AddUpdate and AddDelete are implemented using a number of protected virtual methods of the Database class, overridden in the LocalTransaction class, which look at the effect of the operations on indexes: thus checking check entity, referntial integrity and uniqueness constraints.
3.9 Connection
A Connection is used successively for a sequence of Transactions, one at a time.

The Connection maintains the following data:
· The list of connected databases: A ConnectedDatabase is a level 3 Database and its ordinal (dbx) in the current transaction (the first or only database named in the connection string has ordinal 0)

· the user and authority for the connection (as strings), extracted from the connection string
· other details parsed from the connection string

· the current Transaction if any

· the Server instance that set up this connection

· client data supplied for Java Persistence purposes by the client, as follows:

	Name
	Class
	Description

	entities
	Entity
	Details uploaded about a Java class marked with the @Entity annotation

	enums
	ClientEnum
	Details uploaded about a Java Enum that is used as an entity field

3.10.1 Transaction

Transaction is implemented as an abstract subclass of Connection. Each Transaction is a localised Connection that a LocalTransaction uses to obtain references to other databases, and the Transaction maintains a pointer to the underlying Connection (called connection) that it can use when the time comes for it to commit.
The Transaction maintains the following additional data:

· The status of the current transaction: Started, Aborted, StartCommit, Committed
· The execute state: Parse, Obey, Drop or Rename (see section 5.2)
· A set of Results for this transaction

· The current Context (the query being analysed or procedure activation being executed)

· The parent (underlying) Connection

3.10.2 Transaction Subclasses

There are four subclasses of Transaction:

· AutoTransaction: is a transaction created by default for executing Sql if the client does not start an ExplicitTransaction

· ExplicitTransaction is created by the client explicitly requesting BEGIN TRANSACTION
· RenameTransaction is used when a rename operation is launched by the client (SET or ALTER). Where the renamed object is referred to (e.g. in a stored procedure) the code is updated to reflect the new name.

· DropTransaction is used to check that no references remain to a dropped object. This is done either by preventing drops that would leave orphaned references (RESTRICT) or deleting any referring objects (CASCADE). On a client DROP request RESTRICT is the default.

3.11 Context

A Context contains the main data structures for analysing the meaning of SQL. Query and Activation are subclasses of Context, so they form a stack for analysis and execution. As mentioned in 3.10.1, the transaction maintains a pointer to the top of this stack. All Context information is volatile.
The data maintained by the Context is as follows:

· The current Connection and Transaction

· Lists of Selects, Columns and Tables for query analysis

· A pointer to the outer Context (previous Context on the stack)

The Context provides a way of looking up database objects by name. For this purpose the namespaces of all databases in the current connection are merged, and Context provides a set of lookup routines similar to the following:

Table GetTable(string name, out ConnectedDatabase db)

which enable the caller to get hold of the required Level3 data as well as the Database and the database ordinal concerned.
The merging of namespaces occurs in such a way that objects defined in database files named first in the connection string take precedence over (hide) similarly named objects of the same kind in database named later in the connection string.

Otherwise the Context provides only two other methods of any importance: the usual Push and Pop methods for stack management.

3.11.1 Context Subclasses

Context has the following subclasses, which are described more fully in later chapters:
	Class
	Base Class
	Description

	Activation
	Context
	A context for execution of procs, funcs, and methods: local variables, labels, exceptions etc (see section 5.4)

	Query
	Context
	A base class for query processing

	CursorSpecification
	Query
	SELECT .. ORDER BY

	FoldInterleave
	Query
	.. FOLD and .. INTERLEAVE for temporal table support

	From
	Query
	FROM .. clause in query analysis (tables, views etc)

	JoinPart
	Query
	For handling JOINed tables

	JpqlFrom
	Query
	First entry in FROM clause in Java Persistence Query Language

	QueryExpression
	Query
	Expressions formed of UNION, INTERSECT, EXCEPT

	TableExpression
	Query
	Deals with WHERE, GROUP BY, HAVING, WINDOW

	QuerySearch
	From
	FROM .. WHERE .. for Delete and Update statements

	SelectProcedureCall
	From
	Subclass of From for procedure calls

	SqlInsert
	From
	Insert statement

	UpdateSearch
	QuerySearch
	Update statement

4. Locks, Integrity and Transaction Conflicts
Pyrrho's transaction model uses an optimistic 3-stage Commit protocol, as follows:

· Commit1: For each connected database that has work to commit, we first check any recently committed information from the database file for conflicts with data that this transaction has accessed. Then we lock the DataFile and do this again. Conflicts at this stage may cause the transaction to fail (for example, alteration of a record we have accessed).
· Commit2: For each connected database, flush the physical records to the database (the datafile is still locked). The local transaction structure is now discarded.
· Commit3: For each connected database, get the base Level 3 Database instance to install the physicals that have just been committed to the DataFile, and unlock the datafile.
Pyrrho's optimistic transaction model means that the client is unable to lock any data. The database engine uses DataFile locks internally to ensure correct operation of concurrent transactions. There is a also a Lock class defined in Level 2, and instances only of this lock are created in only 3 places in the code: the names of these instances are “PhysBase”, “databaselist” and “consistency”.
4.1 Locking

Because of the data structure design used in Pyrrho, the use of locking is kept to a minimum. There are two locks on each database instance (the DataFile, and the lock called “consistency”, and 2 locks for the database engine as a whole.
4.1.1 DataFile locks
At the level of file operations, locking is performed to facilitate multi-threaded access to the physical data file. All concurrent transactions to a database share the same instance of the DataFile class, although not the same PhysBase (see section 3.7.1).
lock(pb.df) or Monitor.Enter(pb.df) is used in 5 places in the code:

· When a database file is being created.
· Twice in the ReadBuffer class to ensure that a read can follow a file-positioning action immediately. (It is surprising that there is no way of combining file position and read in .NET.) If disk contents are cached the use of this lock can be avoided.
· For the duration of the Commit process for a local transaction. Monitor.Enter is called d. The corresponding Monitor.Leave is called in 4 places: after cd.db.Commit3 has completed, on Rollback and on exit from Transaction.Commit().
· During the actual physical write operation that occurs during Commit2.

The last two calls to Monitor.Leave mentioned above, and the lock applied during the Physical Write are possibly redundant in the open source edition since the DataFile is already in the correct (locked or unlocked) state.
From this discussion it can be seen that the effect of a DataFile lock is to serialise the transactions in the database file.
4.1.2 “consistency” lock
The “consistency” lock is used to protect the Database object: it is constructed by the private database constructor, and is used for locking the level 3 database information. This lock is shared by all local transaction copies of the database object.
lock(db.consistency) is used in only 2 places in the code:

· While a local copy of the database structure is made at the start of each transaction

· After the end of each transaction while the Physicals for that transaction are installed (atomically) in the level 3 persistent data.
4.1.3 “PhysBase” lock
The “PhysBase” Lock instance is used merely to prevent concurrent access to the physBases list when a physical database reference is being created. It is very rarely used.

4.1.4 “databaselist” lock
The “databaselist” Lock instance is similarly only used when the level 3 list of databases is updated. Since this only happens if a database is about to be loaded, it is very rarely used.

4.2 Transaction conflicts
This section examines the verification step that occurs during the first stage of Commit. For each physical record P that has been added to the database file since the start of the local transaction T, we
· check for conflict between P and T: conflict occurs if P alters or drops some data that T has accessed, or otherwise makes T impossible to commit

· install P in T.

Let D be the state of the database at the start of T. At the conclusion of Commit1, T has installed all of the P records, following its own physical records P': T=DP'P. But, if T now commits, its physical records P' will follow all the P records in the database file. The database resulting from Commit3 will have all P' installed after all P, ie. D'=DPP'. Part of the job of the verification step in Commit1 is to ensure that these two states are equivalent: see section 4.2.2.
Note that both P and P' are sequences of physical records: P=p0p1…pn etc.

4.2.1 ReadConstraints (level 4)

The verification step goes one stage beyond this, requirement by considering what data T took into account in proposing its changes P'. We do this by considering instead the set P" of operations that are read constraints C' or proposed physicals P' of T. We now require that DP"P = DPP" .
The entries in C' are called ReadConstraints (this is a level 4 class), and there is one per base table accessed during T (see section 3.8.1). The ReadConstraint records:
· The local transaction T

· The table concerned

· The constraint: CheckUpdate or its subclasses CheckSpecific, BlockUpdate

CheckUpdate records a list of columns that accessed in the transaction. CheckSpecific also records a set of specific records that have been accessed in the transaction. If all records have been accessed (explicitly or implicitly by means of aggregation or join), then BlockUpdate is used instead.

ReadConstraints are applied during query processing by code in the From class.

The ReadConstraint will conflict with an update or deletion to a record R in the table concerned if

· the constraint is a BlockUpdate or

· the constraint is a CheckSpecific and R is one of the specific rows listed.
This test is applied by LocalTransaction.check(Physical p) which is called from Commit1.

4.2.2 Physical Conflicts

The main job of LocalTransaction.check is to call p.Conflict(p) to see of two physical records conflict. The operation is intended to be symmetrical, so in this table the first column is earlier than the second in alphabetical sequence:
	Physical
	Physical
	Conflict if

	Alter
	Alter
	to same column, or rename with same name in same table

	Alter
	PColumn
	rename clashes with new column of same name

	Alter
	Record
	record refers to column being altered

	Alter
	Update
	update refers to column being aletered

	Alter
	Drop
	Alter conflicts with drop of the table or column

	Alter
	PIndex
	column referred to in new primary key

	Alter
	Grant
	grant or revoke for object being renamed

	Change
	PTable
	rename of table or view with new table of same name

	Change
	PAuthority
	rename of authority with new authority of same name

	Change
	PDomain
	rename of domain with new domain of same name

	Change
	PRole
	rename of role with new role of same name

	Change
	PView
	rename of table or view with new view of same name

	Change
	Change
	rename of same object or to same name

	Change
	Drop
	rename of dropped object

	Change
	PCheck
	a check constraint and a rename of the table or domain

	Change
	PColumn
	new column for table being renamed

	Change
	PMethod
	method for type being renamed

	Change
	PProcedure
	rename to same name as new proc/func

	Change
	PRole
	rename to same name as new role

	Change
	PTable
	rename to same name as new table

	Change
	PTrigger
	trigger for renamed table

	Change
	PType
	rename with same name as new type

	Change
	PView
	rename of a view with new view

	Delete
	Drop
	delete from dropped table

	Delete
	Update
	update of deleted record, or referencing deleted record

	Delete
	Record
	insert referencing deleted record

	Drop
	Drop
	drop same object

	Drop
	Record
	insert in dropped table or with value for dropped column

	Drop
	Update
	update in dropped table or with value for dropped column

	Drop
	PColumn
	new column for dropped table

	Drop
	PIndex
	constraint for dropped table or referencing dropped table

	Drop
	Grant
	grant or revoke privileges on dropped object

	Drop
	PCheck
	check constraint for dropped object

	Drop
	PMethod
	method for dropped Type

	Drop
	Edit
	alter domain for dropped domain

	Drop
	Modify
	modify dropped proc/func/method

	Drop
	PTrigger
	new trigger for dropped table

	Drop
	PType
	drop of UNDER for new type

	Edit
	Record
	alter domain for value in insert

	Edit
	Update
	alter domain for value in update

	Grant
	Grant
	for same object and grantee

	Grant
	Modify
	grant or revoke for or on modified proc/func/method

	Modify
	Modify
	of same proc/func/method or rename to same name

	Modify
	PMethod
	rename to same name as new method

	PColumn
	PColumn
	same name in same table

	PDomain
	PDomain
	domains with the same name

	PIndex
	PIndex
	another index for the same table

	PProcedure
	PProcedure
	two new procedures/funcs with same name

	PRole
	PRole
	two new roles with same name

	PTable
	PTable
	two new tables with same name

	PTable
	PView
	a table and view with same name

	PTrigger
	PTrigger
	two triggers for the same table

	PView
	PView
	two new views with the same name

	Record
	Record
	conflict because of entity constraint

	Record
	Update
	conflict because of entity or referential constraint

4.2.3 Entity Integrity
The main entity integrity mechanism is contained in LocalTransaction. However, a final check needs to be made at transaction commit in case a concurrent transaction has done something that violates entity integrity. If so, the error condition that is raised is “transaction conflict” rather than the usual entity integrity message, since there is no way that the transaction could have detected and avoided the problem.

Concurrency control for entity integrity constraints are handled by IndexConstraint (level 2). It is done at level 2 for speed during transaction commit, and consists of a linked list of the following data, which is stored in (a non-persisted field of) the new Record

· The set of key columns
· The table (defpos)

· The new key as a linked list of values

· A pointer to the next IndexConstraint.

During LocalTransaction.AddRecord and LocalTransaction.UpdateRecord a new entry is made in this list for the record for each uniqueness or primary key constraint in the record.

When the Record is checked against other records (see section 4.2.2) this list is tested for conflict.
4.2.4 Referential Integrity (Deletion)
The main referential integrity mechanism is contained in LocalTransaction. However, a final check needs to be made at transaction commit in case a concurrent transaction has done something that violates referential integrity. If so, the error condition that is raised is “transaction conflict” rather than the usual referential integrity message, since there is no way that the transaction could have detected and avoided the problem.

Concurrency control for referential constraints for Delete records are handled by ReferenceDeletionConstraint (level 2). It is done at level 2 for speed during transaction commit, and consists of a linked list of the following data, which is stored in (a non-persisted field of) the Delete record

· The set of key columns in the referencing table

· The defining position of the referencing table (refingtable)

· The deleted key as a linked list of values

· A pointer to the next ReferenceDeletionConstraint.

During LocalTransaction.CheckDeleteReference a new entry is made in this list for each foreign key in the deleted record.

When the Record is checked against other records (see section 4.2.2) this list is tested for conflict. An error has occurred if a concurrent transaction has referenced a deleted key.

4.2.5 Referential Integrity (Insertion)

The main referential integrity mechanism is contained in LocalTransaction. However, a final check needs to be made at transaction commit in case a concurrent transaction has done something that violates referential integrity. If so, the error condition that is raised is “transaction conflict” rather than the usual referential integrity message, since there is no way that the transaction could have detected and avoided the problem.

Concurrency control for referential constraints for Record records are handled by ReferenceInsertionConstraint (level 2). It is done at level 2 for speed during transaction commit, and consists of a linked list of the following data, which is stored in (a non-persisted field of) the Record record

· The set of key columns in the referenced table

· The defining position of the referenced table (reftable)

· The new key as a linked list of values

· A pointer to the next ReferenceInsertionConstraint.

During LocalTransaction.AddRecord a new entry is made in this list for each foreign key in the deleted record.

When the Record is checked against other records (see section 4.2.2) this list is tested for conflict. An error has occurred if a concurrent transaction has deleted a referenced key.

4.3 Connections to more than one database

There are two principal reasons for connecting to more than one database. The first relates to issues of permanence of data, the other relates to ownership and control.

The permanence issue can be motivated by considering modelling or data mining activities on a business database D, where statistics S are being collected on the data in D. D contains records going back for years: we want to reserve it for its primary purpose and not clutter it up with the temporary or exploratory tables we are constructing for the purposes of S. In this case S can be an initially empty database, and connections can specify Files=S,D so that any new tables get created in S, while the data in D is visible to selection and aggregation operations. It is assumed that roles and permissions are organised suitably for this scenario: for example the database owner for S might only have SELECT permissions in D.

Transactions for this scenario are not problematic since no changes are committed to database D.

The ownership issue can be motivated by the classic transaction example of paying for goods. In a transaction we want to organise payment for and dispatch of the goods. But if the bank account and the stock details are in different databases, A and W say, we need to run this transaction in a connection Files=A,W, where both databases will be updated. It is assumed that roles and permissions are organised suitably so that for example an authority “Order Payment” would be defined in both A and W with permissions to modify the tables concerned. (It should be clear that while the authority name and user identities are the same in both databases, the defining positions of each will be different.)

While it is easiest to consider the case that both databases A and W are managed by the same database server, it is more realistic to consider that one or both of the database is a remote database, as managed by the Pyrrho Enterprise edition.

In this section we examine the mechanisms required to implement transactions of this distributed sort, assuming for simplicity that all participants in the distributed transaction are local to the current database server,

4.3.1 Committing a distributed transaction

The Transaction.Commit algorithm was briefly outlined at the start of section 4. We review the procedure here, particularly indicating aspects relevant to multi-database connections.

A database is considered to be a participant in the transaction if there are records to commit for that database. So the number of participants in a transaction will usually be 1 even in a multi-database connection. The code begins by constructing an array to collect participants. Then each of the stages in the Commit mechanism is repeated for all of the databases in the connection, but skipping those that have no work to commit.

Commit1: We check that it is appropriate for this user and authority to commit changes to this database. We examine records committed to the database since the start of the local transaction for conflict, lock the database and repeat this step. If all is well, record this database as a participant in the transaction.

Commit2: Now that we are ready to write the transaction records we also have a full list of participants. If there is more than one participant record the distributed transaction details in the transaction record.

Normally the transaction record contains:

· The number of database records following in this transaction
· The timestamp of the transaction

· The user identity for the transaction

· The authority for the transaction

For a distributed transaction we also record a list of the other participants (OtherTrans class). For each we have

· The (path)name of the database

· The transaction position in that database

4.3.2 Verifying a distributed transaction

Each time the databases are loaded, the installation of the distributed transaction record will verify the accuracy of the participant data: each participant database will be asked to verify that it has a matching distributed transaction record at the specified location.

The verification is carried out at once if the relevant database DP is loaded. If it is not loaded, the distributed transaction check is saved up till later. This represents an optimistic approach: if there is a disagreement about the distributed transaction, the server will regard the information it has as correct, and any problem that emerges is a problem with the database it does not have.
If a connection is subsequently opened by the server to database DP, the server will carry out the deferred transaction checks. If DP does not verify the transaction check, the server regards the state of DP as unacceptable, and raises a database exception.

In a highly distributed environment it might theoretically be quite a problem to track down how any reported problem has arisen, and how it should be resolved, especially if it was unusual for a server to load (or a connection to connect to) both of the databases that are in disagreement. But really there is only one way that problems can arise: at least one, but not all, of the participating databases have been restored from a backup copy to a state before the commit of the relevant distributed transaction. This might happen following recovery from an unusual hardware error, but in any case a deliberate action by one or more database administrators will have been involved and it should be possible (even if difficult) to resolve the difficulty.

The main methods involved in the steps described here are in Database.Install(PTransaction2) and Connection.Open.

5. Parsing, Renaming, and Execution
Pyrrho uses LL(1) parsing for all of the languages that it processes. The biggest task is the parser for SQL2003, but there are also parsers for RDF/SPARQL and for Java Persistence, as follows:
	Class
	Base Class
	Description

	Parser
	
	SQL2003 parser

	JpqlParser
	Parser
	Java Persistence Query Language

	Sparql
	
	RDF/SPARQL language

These three parsers are built in the same way: there is a Lexer class, that returns a Sqlx or Token class, and there are methods such as Next(), Mustbe() etc for moving on to the next token in the input. The discussion in the following sections focuses on SQL2003. The other languages are considered in chapters 9 and 10.

5.1 Lexical analysis

The Lexer is defined in the Pyrrho.Common namespace, and features the following public data:

· char[] input, for the sequence of Unicode characters being parsed

· pos, the position in the input array

· start, the start of the current lexeme

· tok, the current token (e.g. Sqlx.SELECT, Sqlx.ID, Sqlx.COLON etc)
· val, the value of the current token, e.g. an integer value,the spelling of the Sqlx.ID etc.

The Lexer checks for the occurrence of reserved words in the input, coding the returned token value as the Sqlx enumeration. These Sqlx values are used throughout the code for standard types etc, and even find their way into the database files. There are two possible sources of error here (a) a badly-considered change to the Sqlx enumeration might result in database files being incompatible with the DBMS, (b) the enumeration contains synonyms such as Sqlx.INT and Sqlx.INTEGER and it is important for the DBMS to be internally consistent about which is used (in this case for integer literal values).
The following table gives the details of these issues:

	Sqlx id
	Fixed Value
	Synonym issues

	ARRAY
	11
	

	BOOLEAN
	27
	

	CHAR
	(37 recode)
	Always recode CHARACTER to CHAR

	CLOB
	40
	

	CURSOR
	65
	

	DATE
	67
	

	INT
	(128 recode)
	Always recode INT to INTEGER

	INTEGER
	135
	

	INTERVAL
	137
	

	MULTISET
	168
	

	NCHAR
	171
	

	NCLOB
	172
	

	NULL
	177
	

	NUMERIC
	179
	

	REAL
	203
	

	TIME
	257
	

	TIMESTAMP
	258
	

	TYPE
	267
	

	XML
	356
	

Apart from these fixed values, it is okay to change the Sqlx enumeration, and this has occurred so that in the code reserved words are roughly in alphabetical order to make them easy to find.
5.2 Parsing

The The parser retains the following data:

· The Lexer

· The current token in the Lexer, called tok (1 token look ahead)

In addition there are lists for handling parameters, but these are for Java, and are described in chapter 11. Apart from parsing routines, the Parser class provides Next(), Match and Mustbe routines,

5.2.1 Execute status and parsing

Many database objects such a stored procedures and view contain SQL2003 source code, so that database files actually can contain some source code fragments. Accordingly parsing of SQL code occurs in several cases, discriminated by the execute status (see 3.10.1) of the transaction:

	Execute Status
	Purpose of parsing

	Parse
	Parse or reparse of stored procedure body etc. Execution of procedure body uses the results of the parse (Execute class)

	Obey
	Immediate execution, e.g. of interactive statement from client

	Drop
	Parse is occurring to find references to a dropped object (see sections 5.3-4)

	Rename
	Parse is occurring to find references affected by renaming (sections 5.3-4)

5.2.1 Parsing routines

There are dozens of parsing routines (top-down parsing) for the various syntax rules in SQL2003. The transaction is passed in to most of these parsing routines, to enable access to the execute status, and to obtain the Context for analysis and execution. Nearly all of these are private to the Parser.

The routines accessible from other classes are as follows:
	Signature
	Description

	Parser()
	Constructor

	void ParseSql(t,sql)
	Parse an SqlStatement followed by EOF. Used for Obey state.

	void ReparseProcedureClause(t,p)
	Reparse a function body for execution. Parameters, return type and Executable result of the parse are placed in the Procedure p.

	CursorSpecification ParseCursorSpecification(t,sql)
	Parse a SELECT statement for execution (inline View, or Table expression)

	CursorSpecification ParseCursorSpecification(t)
	Parse a subselect during parsing (called from SqlValueSelect)

	QueryExpression ParseQueryExpression(t,sql)
	Parse a QueryExpression for execution (for a View)

	BooleanExpression ParseBooleanExpression(t,sql)
	Parse a Check constraint for execution

All the above methods with sql parameters set up their own Lexer for parsing, so that
new Parser().ParseSql(t,sql)

and similar calls work. The exception is the second ParseCursorSpecification, which uses a pre-existing parsing session.

5.3 Checking Dependencies
CheckDependent is called when processing Drops and Renames, to discover which database objects refer to the object that is being dropped or renamed. To facilitate this, the parsing routines construct a list of references to columns and tables in the context (during all parsing operations). These are examined if dependencies need to be check on drop or rename, in the method Transaction.RefersTo().
Renaming an object occurs on Install of a Change or Alter, and both circumstances result in Database.OnRename being called. Dropping an object occurs on Install of a Drop and during parsing of various Alter operations, and results in Database.OnDrop being called. Both of these routines set up a special transaction t giving the refObj as the object being dropped or renamed, and call DBObject.CheckDependent(t) on all objects in the database.
DBObject.CheckDependent is a virtual method, so that each DBObject subclass can have its own implementation, returning a list of places where the renamed or dropped object is referred to.

5.3.1 Rename Transactions

CheckDependent returns an ATree of IdentChains that refer to the refObj. Fixing them amounts to changing the reference to refer to the object under its new name. This only needs to be done if the object being renamed is referred to in SQL source code: if it is referred to by defining position nothing needs to be done, since the defining position remains the same for the renamed object.
The scenario is that object O is being renamed from A to B. O is called refObj in the Renaming transaction. Other objects R refer to O, e.g. contain SELECT .. A .. ; and these A’s need to be replaced B’s . The RenameTransaction will

The following classes and methods are involved in the above machinery:

· The IdentChain class, which is the result of parsing an SQL identifier chain sequence, contains lxrstt and lxrpos which are the start and end of a single identifier in the SQL input sequence

· Transaction has fields that are used by its subclass RenameTransaction: refObj, the DBObject being renamed, and obRefs, an ATree of IdentChains that refer to refObj (by its old name).
· In the Database class, Install(Change) calls OnRename. This has an override in LocalTransaction, which starts a RenameTransaction and calls Dependent on all DBObjects in the database. Dependent constructs an ATree of IdentChains that need to be modified for the new name, and if any are found, DBObject.FixRename is called to update them.
· DBObject.Dependent is overridden for RenameTransaction support in the following Level3 classes: Check, Procedure, Trigger, and View. All of these classes contain embedded SQL which is parsed or reparsed by the RenameTransaction.

· During From clause processing, table and procedure identifiers are looked up, and any that match refObj are added to obRefs.

· During Setup of SQL operands, when identifier chains are matched up with objects, any that match refObj are added to obRefs. This happens in Select.Fetch, SqlProcedureCall.Setup, and SqlValueFieldSetup.
· DBObject.Fix is overridden in the same classes (and in Method), and typically constructs a new version of the object, and also records a Modify record in the LocalTransaction. It is this Modify that will implement the SQL modifications after the transaction is committed.

5.3.2 Drop Transactions
For Drop transactions CheckDependent returns simply a list of dependent objects. If the requested Drop behaviour is CASCADE all these objects will be dropped too. If the requested Drop behaviour is RESTRICT the presence of any dependent database objects will cause the transaction to fail.
DBObject.Dependent examines the dependency relationship, and returns Sqlx.DROP to silently drop dependent objects in the following cases:
· Dropping a table silently results in dropping its columns and constraints.
· Dropping a user-defined type silently results in dropping its methods

The following situations provoke RESTRICT/CASCADE behaviour, so DBObject.Dependent returns Sqlx.RESTRICT:
· A table or column to be dropped is referred to in any of the classes mentioned in subsection 5.3.1 (apart from check constraints on the object being dropped)
· A table or column to be dropped is referred to in a referential constraint (not self-referential)
· A column to be dropped is referred to in a table constraint in which it is not the only column

· A type to be dropped has a subtype or is the type of a column
· A table to be dropped is referred to by a trigger

· A domain to be dropped is the domain of a column

The following classes and methods implement the Drop machinery:

· Transaction.Drop calls OnDrop, passing in the DropAction (RESTRICT or CASCADE).
· OnDrop has an override in LocalTransaction that creates a queue of objects to be deleted, and iteratively checks their dependencies, using DBObject.Dependent.
· If any of these routines return RESTRICT, and CASCADE was not specified, the transaction rolls back. If there are no errors, all entries in the queue will be dropped.
5.4 Stored procedures

In SQL2003, stored procedures are distinguished by their name and arity (number of parameters), so the B-Tree or procedures maintained by the database (or the methods of a structured type) uses name+"$"+arity as keys. Methods are implemented as a subclass of Procedure. Procedures can be external, in which case execution of the procedure takes place remotely, in the client application that handles the procedure.
5.4.1 Activation

As mentioned in section 3.11, Contexts form a stack, and the Transaction keeps track of the top of the stack. An Activation is a subclass of Context that maintains the following information:

· The Procedure object being executed (may be a function or method)

· A list of the local variables declared by the activation. Local Variables have a name and a value. The value of a cursor declaration can be a Column, which in some implementations automatically reports the value for the current row in the cursor.

· A list of the exceptions for which handlers have been declared.

· The return value

· The current signal (exception condition) if any. This is set when a Signal statement is obeyed and when a DatabaseException occurs.
· The current break if any. This is set when an IterateStatement or a BreakStatement is obeyed.
· A set of markers, one per LocalTransaction, giving the number of Physicals proposed by the transaction at the start of the activation. If an exception is handled in the activation, Physicals below this mark can be retained.

The only methods provided by the Activation class are

· InvokeWith() for calling the procedure with a list of actual parameters; and

· Undo() which simply forgets physicals above the marked positions described in this subsection.

5.4.2 Executables

A stored procedure database object contains the proc_clause (consisting of the formal parameters and procedure body) as a string. Prior to each execution of the procedure, it is reparsed, since the context will be different each time in general. Stored procedures can contain references to database tables and columns, and the operation of SQL2003's syntax rules depends on such things as the availability of primary keys, references etc. The result of the reparse is stored in (the local copy of) the procedure database object as an Executable.
An Executable has a type, and an optional label. There is a stmt field which is used for Executables that are SqlStatements such as SqlInsert, UpdateSearch etc.
The main methods of the Executable class are summarised as follows:

· Iterate and Break: These are very similar in operation. Break is designed to be tested before obeying the next statement in the compound statement. Iterate is designed to be tested before repeating a loop. If there is a signal condition, it is obeyed. If the break matches the head label of the Executable (Break) or "+"+label (Iterate), it is reset. Then execution of the rest of the compound statement is skipped if break was set (Break) or is set (Iterate).
· Obey has an override for each Executable subclass.

5.4.3 Subclasses of Executable

The following subclasses of Executable are for stored procedures:

	Name
	Description

	AssignmentStatement
	An assignment statement for a stored procedure

	BreakStatement
	A Break statement for a stored procedure

	CallStatement
	A call statement for a stored proc/func

	CloseStatement
	A Close statement for a stored proc/func

	CompoundStatement
	A Compound Statement for the SQL procedure language

	FetchStatement
	A fetch statement for a stored proc/func

	ForStatement
	A for statement for a stored proc/func

	Handler
	A Handler declaration of exception handling

	HandlerStatement
	An Exception clause for a stored procedure

	IfThenElse
	An if-then-else statement for a stored proc/func

	IterateStatement
	An Iterate (like C continue;) statement for a stored proc/func

	LocalVariable
	A local variable declaration

	LoopStatement
	A Loop statement for a stored proc/func

	MultipleAssignment
	A multiple assignment statement for a stored procedure

	OpenStatement
	An Open statement for a stored proc/func

	RepeatStatement
	A repeat statement for a stored proc/func

	ReturnStatement
	A return statement for a stored procedure or function

	SearchedCaseStatement
	A searched case statement

	SelectSingle
	A Select statement: single row

	Signal
	A signal statement for a stored proc/func

	SimpleCaseStatement
	A Case statement for a stored procedure

	WhileStatement
	A while statement for a stored proc/func

Normally the Parser is in Obey mode, for parsing invoked from the client by ExecuteReader or ExecuteNonQuery. When parsing any of the above constructs the execute status (Transaction.parse) is set to ExecuteStatus.Parse, so that actually obeying an Executable is controlled by the Obey method of the Executable class, as discussed in section 5.4.2.

6. Query Processing

In section 2.2.10 a very brief description of query processing was given in term of bridging the gap between bottom-up knowledge of traversable data in tables and joins (e.g. columns in the above sense) and top-down analysis of value expressions.
6.1 Query Classes

The classes used to implement query processing are designed around the SQL2003 grammar, and so are dictated by the Parser:

	Class
	SQL2003 syntax element
	Description

	CursorSpecification
	<cursor specification>
	QueryExpression + order by

	QueryExpression
	<query expression>
	UNION, EXCEPT and INTERSECT

	QuerySpecification
	<query specification>
	SELECT … TableExpression

	TableExpression
	<table expression>
	from, where, group, having, window

	From
	<table primary>
	

	JoinPart
	<joined table>
	

For a full list of Query classes in Pyrrho, see section 3.11. The Query class provides a basic structure for query processing. During analysis the detailed data flows up and down the data structure as described below.

Query is a subclass of Context which keeps track of what columns and tables are defined (see section 3.11). The most important additional fields of the Query class are as follows:

· All queries can have a SelectList: for QuerySpecification and above the SelectList is constructed from the select items provided in the syntax (if no select items are given, the columns of the TableExpression are used)

· All queries can have a set of columns for ordering the results. For CursorSpecification these are specified by the client. For join processing the join columns are ordered.

· All queries can have a where clause (a Search).

· All queries can have a RowSet as the results of the query
The two main classes involved in parsing queries are SqlValue (corresponding to the Value or <value expression> SQL syntax) and Search (corresponding to <search condition>).

6.1.1 SqlValue
SqlValue is an abstract class with the following main properties and methods:

	Name
	Type
	Description

	kind
	Sqlx
	The sort of SqlValue, as placed here by the parser

	Name
	string
	Used in subclasses for aliasing

	sel
	Select
	See section 6.4.2

	trans
	Transaction
	Gives access to activation stack

	type
	DbxDataType
	The type that values have

	Value
	object
	The value for the current row if defined

Other methods are implemented to help with analysis, in cloning SqlValues and in computing aggregates (see later sections).

There are about 30 subclasses of SqlValue which either help to build a concrete syntax tree during the parse (e.g. SqlValueExpression), and/or provide machinery specific to particular types of values (e.g. SqlMultiset).
6.1.2 Search

Search is an abstract class with the following main properties and methods:

	Name
	Type
	Description

	Matches
	bool
	Whether the current row matches the search condition

Other methods are implemented to help with analysis, in cloning Searches and in computing aggregates and joins.

There are about 17 subclasses of Search which either help to build concreate syntax trees during the parse (e.g. BooleanExpression), and/or provide machinery specific to particular types of search condition (e.g. MemberPredicate).
6.2 Overview of Query Analysis

By the time parsing has finished,

· the given query is represented by one of the above classes (generally CursorSpecification) with access to parts of the query through the fields of these classes (a kind of syntax tree)

· The constructor of the From clause has already established a set of columns for the results at that level.
Analysis of any kind of query goes through a set of stages:
	Stage
	Description
	Flow of analysis

	Sources
	source analysis to establish where the data is coming from, and resolve reference ambiguity. Columns and tables are entered in the Context at this stage.
	Bottom up

	Selects
	selects analysis to match up references in value expressions with the correct columns in the sources
	Top down

	Conditions
	conditions analysis which examines which search and join conditions can be handled in table enumeration
	Top down

	Ordering
	ordering analysis which looks not only at the ordering requirements coming from explicit ORDER BY requests from the client but also at the ordering required during join evaluation and aggregation,
	Top down

	RowSets
	RowSet construction, which in many cases can choose the best enumeration method to meet all the above requirements
	Bottom up

6.3 RowSets

A Rowset consists of a set of columns (i.e. a Row) and an enumerator which advances the row. Query processing is complete when this data can be passed up to the protocol level, which transfers data one row at a time on request from the client.

Base tables in the database have at least one enumerator defined (either based on physical position the database file, or from the primary key or other index). Such table row sets identify the row by its PhysPos (a pair: database ordinal, and defining position in the database file), and the columns are the TableColumns defined by the base table. This arrangement is the ideal: some simple data structures are organised which define the relationship between the data the client has requested and the data available from the physical records in the database file. Data is not copied or moved about in memory unless absolutely necessary.
Selection using a search condition can be done by the enumerator: moving not to the next physical row, but to the next row satisfying the search condition. If the search condition involves only the values of the primary index (or some other index), then whether a particular is included or not can be determined from the index, without even the need of examining the actual data values in the database file.

To compute a join, it is other the case that join columns have been defined and the join requires equality of these join columns (inner join). If the two row sets are ordered by the join columns, then computing the join costs nothing (i.e. O(N)): a join enumerator simply advances the left and right row set enumerators and returns rows where the join columns have matching values.
If the join columns are not in order, a new enumerator is constructed for the data, which is still left on disk. The cost is O(NlogN+MlogM) if both sets need to be ordered. Cross joins cost O(MN) of course.

Grouping and window operations generally cannot be constructed on the fly in this way. In an earlier version of Pyrrho a single grouping operation could sometimes be done during enumeration, but this code has disappeared with the implementation of window functions and advanced grouping operations.

The above transformations of row sets motivate what happens during query processing in Pyrrho.
6.4 Columns and Selects
As discussed in the above section, during Query analysis it is quite common for queries to be combined (e.g. in Joins) or have additional columns added (e.g. derived or computed columns in the results). The Select data structure helps the map the relationship between an item in a select list and a column in a rowset.
The code makes extensive use of partial evaluation, so that for example parameterless Column value expressions (e.g. col.Value) or Search conditions (e.g. where.Match) are affected by movement of an enumerator (e.g. enu.MoveNext()). The effect of this relatively unusual programming technique is to mimic the behaviour of SQL expressions: thus a RowSet is a Row (a set of Columns) and an Enumerator (which modifies the values of the row columns as it moves).
This matches well with the top-down approach to parsing and query processing that is used throughout Level 4 of the code.
6.4.1 Column

Column is an abstract class: there is a multi-database version of it called DbxColumn. A Column has a name, a defining position, a datatype and a Value. The Value is a C# property so that the getter can perform a computation if this is required, and most implementations of Column are specific to a particular kind of RowSet so that the Value is computed for the current row.
There are about 36 implementations of DbxColumn apart from Select, which is described next. Columns are added by the From constructor to the From’s idea of what the result columns will be, and during the analysis of the TableExpression the appropriate columns, for joins and window functions etc are propagated up the Query hierarchy.

6.4.2 Select

Select is a rather different sort of subclass of Column. Selects act as a bridge between the SQL notion of a VALUE (implemented in Pyrrho as SqlValue) and the columns in the rowsets of a query. Although there is a mechanism for copying expressions, the main idea is that a SqlValueExpr constructed by the parser is reused as it is passed down the hierarchy, with the help of a multiquery mechanism in the Select class.
The Select has a list of QueryPos instances, which map the Select to particular Queries and column position. Generally there is just one of these in operation per Select at any time, but the main idea of this linkage is that the value for the Select is provided by the given Column in the Query’s RowSet. Using this machinery, one rowSet can be replaced by another very easily, and quite complicated remappings, for example with window functions or temporal tables can be handled efficiently.
The only danger is that although Selects inherit the Column interface, they must never be used as a RowSet column, since this causes infinite recursion (stack overflow).

6.5 Aggregation

The SQL99 version of aggregation can be described as follows:

During aggregation rows are generated only for new values of the group-by columns (the outer enumeration). Enumeration of the intervening rows (inner enumeration) increments counters, accumulates sums, etc., depending on the aggregation functions involved.

This is achieved by two virtual functions in both SqlValue and Search classes: StartCounter and AddIn. As their names imply, these functions are called for each column in the select list, and for the where condition: StartCounter at the start of the inner enumeration, and AddIn for each row in the inner enumeration. This mechanism means for example that evaluation of SUM only occurs on each row of the outer enumeration, by which time the SqlFunction class holds the correct value.
There is also a special SqlFunction.AddIn (and SqlFunction.AddIn1 for counters) defined for window functions, mentioned in 6.5.5 below.

6.5.1 The Group By clause

In SQL2003, the traditional GROUP BY concept is now a special case of a more complex mechanism, and the <group by clause> takes a whole page of BNF in the standard.
As the standard puts it: "An aggregate function is a function whose result is derived from an aggregation of rows defined by one of:

· "the grouping of a grouped table, in which case .. for each group there is one aggregation, which includes every row in the group.

· "the window frame of a row R of a windowed table relative to a particular window structure descriptor, in which case.. the aggregation consists of every row in the window frame of R as defined by the window structure descriptor."
6.5.2 Group Specification
A Grouping is just a list of column references together one of the keywords GROUP, ROLLUP, CUBE, or GROUPING.

A GroupSpecification is created when the parser encounters the GROUP keyword. It contains
· whether DISTINCT has been specified

· a list of specified grouping sets. For a simple group by clause, each Grouping is just added to this list. Rollups and Cubes define grouping sets to be added to the list.
The Group Specification is transformed by the parser, in the manner specified by SQL2003 02-7.9 Syntax Rule 10, to be "primitive", consisting of a list of Groupings.

6.5.3 The Grouping Row Set
The Standard goes on, in Syntax Rule 17, to define a sequence of transformations whereby the query specification is equivalent to selection from a UNION, one term in the union for each set of grouping columns in the group by clause. The Pyrrho implementation follows this prescription very closely.

The first step is to enumerate the grouping columns, so that each Grouping can be represented using an integer bitmap. Then information is gathered (GroupInfo) for each Grouping consisting of the rows that will be contributed to the union from this grouping.

Then the enumerator for the overall rowset consists of an enumerator for the GroupInfos, and the enumeration of rows in each grouping set is carried out using StartCounter and AddIn as described earlier in this section.

6.5.4 Window Specifications

The syntax given in SQL2003 for <window clause> is even more complicated than for <group by clause> . The WindowSpecification contains the following data after parsing:

· The associated Query

· A name for the window if specified

· The name of the ordering window if specified

· An ordering if specified, and which of the order items are partitioning order items

· ROW or RANGE if specified for the window frame

· The low and high WindowBounds if specified

· Any exclusions that have been specified

· The columns of the Window specification

During computation of the WindowSpecification, the following data is maintained:

· The start and extent of the current window

· Five enumerators describe the window: the start, the end, the first tie, the last tie and the current row.
· A rowset containing the distinct values in the window so that MAX, MIN, ANY, EVERY etc can be maintained for the window during enumeration

· The current key

6.5.5 Windowed Row Sets

During the computation of Rowsets for a windowed table, the DoWindows() method in the QuerySpecification class does all the work required to implement window functions. The implementation follows the SQL2003 rules very closely. Unfortunately this usually involves creating explicit rowsets, since different window specifications generally imply different orderings of rows. The following methods help with the implementation:

· InWindow(WindowSpecification wp, SlotEnumerator e) tests whether the current row of e is in the window specified by wp.

· Tie(wp,e) tests to see if the given row ties with the window (i.e. all key columns match)

· MakeWindowFrame(ValueRowSet vrs,WindowSpecification wp, WindowSpecification ws) creates the window frames for a new window, adjusting all of the five enumerators of the Window Frame ws for the current state of wp. StartCounter, AddIn, and TakeOut are called as rows are added and taken out of the window frame (see below)
· AdjustWindowFrame(vrs,wp,ws) adjusts the window frame when wp moves to the next row, examining ties, bounds and exclusions.

· TestEndRange(wp,ws) tests the window against the end of a given range

· StartCounter(vrs,ws) Starts counters for the window, calling StartCounter for each relevant column in vrs.

· AddIn(vrs,ws,we) calls the special window functions AddIn and AddIn1 as required.
· TakeOut(win,wenu) on the other hand codes behaviour directly for each window function to deal with effects on aggregates of taking a row out of the window frame. (It might be neater to have AddIn and TakeOut in the one place, but it is actually quite convenient as things stand, side the code can easily be compared side by side.)

Comments in the code quote extensively from the rules specified in the standard, section 7.11.
7. Permissions and the Security Model
This chapter considers only the security model of SQL2003, i.e. machinery for access control (GRANT/REVOKE). Pyrrho's model for database permissions follows SQL2003 with the following modifications

· The concept of Authority has been added

· GRANT HANDLER TO has been added to implement security for external procedures

· REVOKE applies to effective permissions held without taking account of how they were granted

The last point is documented in the manual as a set of proposed changes to the SQL2003 standard. The manual provides a significant amount of helpful information about the security model, e.g. in sections 3.5, 4.4, 5.1, 5.5, 13.5.
7.1 Authority

An authority is like a role in that it can be granted privileges and users can be granted an authority. Unlike roles, however, the user must declare which (one) authority they are using. They can use just one authority in any transaction, and Pyrrho records which authority has been used, together with the user identity, in the record of the transaction. In this way Pyrrho supports an investigation, as it enables logging not just of who did something, but potentially, why.

With this model, database administrators are encouraged to have authorities for different business processes, and given these authorities privileges over tables etc, and grant authorities to users, rather than granting privileges to users direct.

Authority is implemented as a subclass of Role.

7.1.1 The default authority for a database
To get things started, a new database comes with a default authority (with the same name as the database) that can do anything and grant anything, and the database owner can use and administer this role. At the moment there is no mechanism for modifying the name of the default authority.
Creation of database objects requires the use of the default authority, so it is good practice for some user to be allowed to use this default authority, and who can then reassign privileges on such created objects.
It is good practice to create other authorities for all operations on database tables and other objects and to transfer privileges to these authorities rather than use the default authority for all operations.
7.2 Effective permissions

The current state of the effective permissions in a database can be examined using the following system tables:
	Name
	Description

	Sys$Connection
	Shows the owners of connected databases

	Sys$Table
	Shows the owners of tables

	Sys$Privilege
	Shows the current privileges held by any grantee on any object except columns

	Sys$ColumnUser
	Shows the current privileges held by any grantee on columns

Effective permissions are a wider category than granted permissions. For example, if a ROLE R is granted update permission for table T, and user U has been granted role R, then the Sys$Privileges table will show that U has update permission on T.
In the Enterprise and Datacenter editions, the Database owner and the user identified as Investigator are the only users allowed to examine database Log tables; and the owner of a Table and the Investigator are the only users allowed to examine the ROWS(..) logs for a table. The transaction user becomes the owner of a new database or new table. At the moment there is no mechanism for changing the ownership of databases or tables.
7.3 Implementation of the Security model

As is almost implied by the table in section 7.2,
· Each Database has an owner

· Each Table has an owner

· Each DBObject (including TableColumns) has an ATree which maps grantee to combinations of Grant.Privilege flags.

· Each Role has an ATree which maps database object (defining position) to combinations of Grant.Privilege flags.

7.3.1 The Privilege enumeration

These values are actually stored in the database in the Grant/Revoke record, so cannot be changed. This is a flags enumeration, so combinations of privileges are represented by sums of these values:

	Flag
	Meaning
	Flag
	Meaning

	0x1
	Select
	0x400
	Grant Option for Select

	0x2
	Insert
	0x800
	Grant Option for Insert

	0x4
	Delete
	0x1000
	Grant Option for Delete

	0x8
	Update
	0x2000
	Grant Option for Update

	0x10
	References
	0x4000
	Grant Option for References

	0x20
	Execute
	0x8000
	Grant Option for Execute

	0x40
	Owner
	0x10000
	Grant Option for Owner

	0x80
	Role
	0x20000
	Admin Option for Role

	0x100
	Usage
	0x40000
	Grant Option for Usage

	0x200
	Handler
	0x80000
	Grant Option for Handler

7.3.2 Checking permissions
The main methods and properties for this are as follows:

· CheckPermissions(DBObject ob, Privilege priv) is a virtual method of the Database class, whose override in LocalTransaction calls the ob.ObjectPermissions method.

· ObjectPermissions(Database db, Privilege priv) has an implementation in DBObject that checks that the current user or the current authority holds the required privilege.
· There is an override of ObjectPermissions in the Table class, which deals with system and log tables: in the open source edition these tables are read-only and public.

· Table.AccessibleColumns computes the columns that the current user and authority can select.

7.3.3 Grant and Revoke

The main methods and properties for this are as follows:

· Access (Database db, bool grant, Privilege priv) grants or revokes a privilege on a DBObject. This requires the creation of a copy of the DBObject with a different users tree (a virtual helper method NewUsers handles this).

· There is an override of Access in the Role class, which cascades grants and revokes on a Role to all users of the role. (This implements the notion of effective permissions mentioned above.)
· Table.AccessColumn applies a Grant or Revoke to a particular column

· Transaction..DoAccess creates a Grant or Revoke record, and is called by Transaction.Access… routines that are called by the Parser.

7.3.4 Permissions on newly created objects

As mentioned above, creation of new database objects requires use of the default authority. Privileges on the new object are assigned to the default authority as follows:

	Object Type
	Initial privileges for default authority
	with option

	Table
	Insert, Select, Update, Delete, References
	Grant

	Column
	Insert, Select, Update
	Grant

	Domain
	Usage
	Grant

	Method
	Execute
	Grant

	Procedure
	Execute
	Grant

	View
	Select
	Grant

	Authority
	UseRole
	Admin

	Role
	UseRole
	Admin

It is good practice to limit use of the default authority, for example to a database administrator, and only for changes to the schema.

7.3.5 Dropping objects

The main methods and properties for this are as follows:

· When a database object is dropped it must be removed from any Roles that have privileges on it. This is done by Role.RemoveObject.

· Similarly when a grantee is dropped there is a DBObject.RemoveGrantee method to remove all references to it in grantees lists help by database objects.
8. XML, RDF and SPARQL
For an introduction to these topics see sections 5.9-5.10 in the manual. SPARQL (SPARQL Protocol And RDF Query Language) has two parts, and the RDF query language implementation is discussed in this section: for the SPARQL protocol itself, see section 11.

The RDF implementation consists of three elements:

· Low-level support for storing RDF triples in databases

· Support for the syntax of the query language

· The SPARQL engine that obtains the results of a query from an RDF graph

To these 3 elements Pyrrho adds

· the automatic mapping of database data and metadata into a virtual RDF graph so that it can be queried using SPARQL and combined with other semantic information.

· the ability automatically to import results from remote graphs using the Sparql protocol (i.e. other SPARQL servers, not necessarily Pyrrho)

Standards for SPARQL and RDF are still under development by W3C, and it is hoped this open source edition will help the development of the new standards.

Most of the SPARQL implementation in Pyrrho is contained in the single source file Sparql.cs .

8.1 Support for RDF graphs

The manual says the following (5.10.3):

Explicit RDF triples are stored in a table (called “Rdf$”) with the following form

Rdf: (val char unique, subj int references rdf(position), pred int references rdf(position), obj int references rdf(position), graph references rdf(position))

This is not standard SQL, since POSITION is a pseudocolumn in the RDF table. The following would be standard SQL, but would be a bit less efficient in operation:
Rdf1: (id int primary key, val char unique, subj int references rdf1, pred int references rdf1, obj int references rdf1, graph int references rdf1)

Providing efficient implementation for RDF queries led to the development of some extra classes in the Pyrrho DBMS that optimise the use of POSITION as a foreign key.
When the Sparql engine starts up, it locates the Rdf table: if necessary it constructs it (and will commit it to the database if SAVE occurs).

The following classes and methods provide the main support for RDF graphs:

	Class
	Base class
	Description

	Rdf
	
	Represents the above table and its contaents

	RdfType
	(Enum)
	VAR, REF, BLANK, LITERAL

	RdfTerm
	
	A base class for Rdf nodes and expressions: contains parsing support

	RdfBlank
	RdfTerm
	A reified blank node in the Rdf database

	IriRef
	RdfTerm
	Implements the Sparql Q_IRI_REF token

	RdfLiteral
	RdfTerm
	As in Sparql syntax: supports standard types

8.2 Support for RDF syntax

RDF syntax can be presented to the Pyrrho DBMS either in the SQL stream from the Pyrrho protocol, or directly using the SPARQL protocol, which is described in section 11.

Parser.ParseSQLStatement tests for the string "RDF" (and case variants) at the start of an SQL statatement. If it is present, Parser.ParseRdf is called instead. ParseRdf does rather less than it seems to claim: after checking for SAVE or RETRACT clauses, it uses the special routine Lexer.XmlNext to collect the XML input to SPARQL. Then Transaction.ExecuteRdf is called to process the RDF syntax.
Transaction.ExecuteRdf constructs a Sparql engine to handle the Rdf input, which it parses. Depending on the form of the Sparql input, action is then taken as follows:
	Sparql type
	Action taken

	Select
	Sparql.Results constructs the results RowSet

	Ask
	The trivial AnswerRowSet is constructed to contain the yes/no result

	Construct
	If neither SAVE nor RETRACT has been specified, the resulting graph is returned

	Describe
	A graph containing the describe information is returned

8.3 The Sparql engine

This does most of the work. While Pyrrho works with enumerations of rows, Sparql works with RDF graphs. Accordingly the Sparql engine has some very different algorithms, such as for supporting graph traversals and backtracking.
Recall that LocalTransaction maintains a list of potential database changes that will all be committed with the transaction. SparqlTransaction maintains a tree of database changes (indexed by position). On commit, only the records that have been marked for saving will be committed.
During traversal, unbound nodes can be bound, and are unbound during backtracking. As in Prolog, two unbound nodes (SparqlVars) can be bound to each other, so that binding either to a literal (say) gives the literal value to both. This is implemented in class RdfTerm using a circular list such that at most one RdfTerm r in the circular list is not a SparqlVar: r is then the common value of all of the SparqlVars in the list. In this way the Sparql engine extends the machinery of section 8.1.
The main classes of the Sparql engine are as follows:

	Class
	Base class
	Description

	Sparql
	
	Deals with a single Sparql query. Contains parsing routines supported by a Lexer and classes such as QName, ResWd

	SparqlTransaction
	LocalTransaction
	Supports a tree of database changes that can be marked for saving during traversals. It overrides AddRecord and Commit2, and provides the Mark method to the Sparql engine.

	SparqlRecord
	Record
	Adds the mark field so that records can be marked for saving

	SparqlVar
	RdfTerm
	?VARNAME or $VARNAME

	Binding
	
	Implements the binding notion described in this section

	SparqlBlank
	RdfTerm
	A blank node in Sparql input, not necessarily reified

	Mapping
	
	A mapping to a reified node

	SparqlRef
	IriRef
	Can be a qualified name

	SparqlLiteral
	RdfLiteral
	A friendly version of RdfLiteral: we track the types

	Traversal
	(Enum)
	Results, Construct, Check, Describe

	SparqlGraph
	
	A set of arcs in a tentative graph: for parsing

	SparqlBasic
	
	A basic arc in a SparqlGraph: for parsing

	SparqlGraphCondition
	SparqlBasic
	For parsing and execution

	SparqlTriple
	SparqlBasic
	A typical graph element: includes Pyrrho machinery and for remote triples

	SparqlFilter
	SparqlBasic
	For parsing and execution

	SparqlOptional
	SparqlBasic
	For parsing and execution

	SparqlUnion
	SparqlBasic
	For parsing and execution

	SparqlCondition
	
	Compute effective boolean value

	SparqlExpressionItem
	SparqlCondition
	For parsing and execution

	SparqlExpression
	SparqlCondition
	For parsing and execution: handles built-in functions

	SparqlRow
	DbxRow
	For building results sets

	SparqlRowSet
	RowSet
	For building results sets

	RdfGraphRowSet
	RowSet
	For showing the Rdf graph in rowset form

	SparqlAnswerRowSet
	RowSet
	A trivial table for showing a yes/no answer

9. The Java Persistence Query Language
The Java Persistence Query Language and its grammar are introduced in section 6.14 of the manual.
The purpose of these notes is to explain how Jpql with its object oriented approach has been integrated into the SQL-based DBMS.

Most of the Jpql implementation is contained in the file Persistence.cs, and mostly consists of classes subclassing the standard ones. For example, there is a JpqlLexer subclassing Lexer, whose only difference from SQL2003's Lexer is to be case-sensitive on identifiers. Implementing JpqlParser a subclass of the SQL2003 Parser means that most of the machinery for handling functions, values and aggregates can be used directly.
Interesting subtleties in the code are

· The uploading of Entity information by the server when an entity reference is parsed for the first time.

· The relationship between Connection-based data and LocalTransaction-based: the Entity model data needs to be based on defining positions instead of Level 3 database objects, since transactions can change the latter

· The result of a SELECT is a network of entity instances (joined together by relationships) and this needs to be managed. The server does this by always returning entity references rather than entity fields, except at the top level. Eager fetching is done by the class library: the server just does what it is asked to do. Both client and server are expected to operate a cache.

9.1 The Entity model

The main difference with SQL2003 relates to the focus on Entities, and the relationship between Entities (defined by Annotations in a Java application) and tables in a relational database. This is not a problem for Java Persistence normally: if the Entity classes are private to the application then the annotations can be regarded as definitive. It is only with a requirement for interoperability with other applications and other means of accessing the same database tables that careful and interesting software design becomes necessary.
Accordingly, the line taken in the Pyrrho implementation of Java Persistence is that a connection will upload its entity definitions to the DBMS, and the DBMS will use the resulting mappings of Entities to database tables for the purposes of that connection. The mapping is thus thread-local in the Pyrrho server: from Pyrrho's viewpoint the mapping being used is only one of many possible entity models build on the same base tables.

The following classes are defined in Persistence.cs:
	Name
	Base Class
	Description

	Annotation
	
	A representation of a Java annotation

	ClientEnum
	
	A representation of an Enum defined by the Java client

	Entity
	
	An entity defined by the client must have a primary base table

	SecondaryTable
	
	The information associated with a secondary base table

	EntityField
	
	A field in an entity and its mapping to database objects

	Instance
	
	An entity instance corresponding to a record in the primary table

	Instances
	
	A set of instances of the same type

9.2 Specialised SQL2003 classes
The following classes are defined in Persistence.cs:
	Name
	Base Class
	Description

	EmptyPredicate
	Search
	Implements the java EMPTY predicate for a set of classes

	JpqlFrom
	Query
	The first FROM reference defines the Entity type

	EntityRowSet
	RowSet
	Results from the Jpql query

	SqlPathValue
	SqlValue
	Implement the concept of Java Persistence path expression

	EntityFieldSelect
	Select
	The direct children of an entity identification variable

	JpqlInPath
	JpqlFrom
	Identification Variable info for an IN or JOIN part

	JpqlLexer
	Lexer
	A version of Lexer that is case sensitive for identifiers

	JpqlParser
	Parser
	Extends Parser for the additional syntax constructs of Jpql

10. The Pyrrho protocol
The manual gives reference documentation in section 8.4 for the classes defined in OSPLink.dll, and in section 6.14 for the annotations defined by the Java class library org.pyrrhodb. Reading the source code for the client libraries really requires some information about the "Pyrrho protocol" that defines the binary traffic between the client and server. (The manual in section 6.13 mentions a "PyrrhoDb protocol": this is not the same thing and is actually implemented on the client side by class PyrrhoWebRequest in file PyrrhoDbClient.cs).
In the following discussion, ints are coded in 4 octets as signed 32-bit quantities, most significant octet first, and longs are 8 octets. A String is always coded in UTF8 invariant-culture Unicode, prefixed by an int giving the number of octets in the string data.

Localisation is handled by the client library.
10.1 Establishing the connection

As soon as the TCP connection to the server is established, the server sends a long to the client. This is a nonce used for encrypting the connection string (see section 10.2).

Client replies with octet 0x0 .

10.2 Sending the connection string

For the C# implementation, the user name is supplied by the operating system (not by the user). Not all fields in the connection string are sent to the server: provider, host and port are already used in establishing the connection to the server, and the server is locale-independent, so locale is not sent either. For the reference for the connection string, see section 6.4 of the manual.

All traffic in this section is encrypted including the protocol octets.
	Protocol Octet
	Further data
	Description

	0x15
	String
	the user name

	0x16
	String
	the comma-separated list of databases to connect to

	0x17
	String
	the authority for the connection

	0x18
	
	signals end of the connection string data

	0x19
	String
	the stop time

	0x1a
	String
	DataCenter edition: the DBMS host

	0x1b
	String
	DataCenter edition: the database writer host

	0x1c
	String
	DataCenter edition, the database writer port

On successful completion of this phase, non-encrypted communication resumes, and the server responds with octet 0xa.
10.3 Normal traffic

Normal traffic consists of client requests and server replies, using formats described in the following subsections (braces { } indicate repetition prefixied by an int count):
	Client Octet
	Further data
	Description
	Server

Octet
	Further data
	Description

	0x2
	String
	ExecuteNonQuery
	0xb
	int
	number of records affected

	0x3
	int
	SkipRows
	
	
	

	0x4
	
	PutRow
	0xe
	Row
	

	
	
	
	0xf
	
	no further rows

	0x5
	
	ReaderClose
	
	
	

	0x6
	
	Begin Transaction
	
	
	

	0x7
	
	Commit
	0xb
	
	

	0x8
	
	Rollback
	0xb
	
	

	0x9
	
	Close connection
	
	
	

	0xa
	
	FileNames
	0x12
	{ String }
	Names of databases in folder

	0xc
	int
	Provenance for col
	0x14
	String
	"dbname/rrrr/cccc"

	0xd
	String
	Set authority
	0xb
	
	

	0xe
	
	ResetReader
	0xb
	
	

	0xf
	String
	Detach database
	0xb
	
	

	0x10
	String
	Callbacks setup
	0xb
	
	

	0x11
	3 longs
	(Synchronise)
	0xb
	{ Octet }
	

	0x12
	….
	(Remote Commit)
	…
	…
	

	0x13
	
	(Checkpoint)
	0x15
	long
	

	0x15
	String
	ExecuteReader
	0xd
	{ Column }
	

	
	
	
	0xb
	
	if not a select statement

	0x16
	
	(DbLength)
	0x15
	long
	

	0x17
	String
	ExecutePosition
	0x0
	long
	

	0x18
	2 longs
	PyrrhoDbGet
	
	String
	XML cell (rrr,ccc) from db

	0x19
	2 longs, String
	PyrrhoDbSet
	
	
	

	0x1b
	JpqlReq
	ExecuteJpql
	0xd
	{ Column }
	

	
	
	
	0xb
	
	if not a select statement

	0x1c
	JpqlReq
	ExecuteJpql
	0xb
	int
	no of rows affected

	0x1e
	String, long
	GetInstance
	0x1e
	{ Variant }
	Data contained in an instance

10.3.1 Column
A Columns reply consists of the number of columns, followed by the caption for the column and a type. The caption is a String. The type is an int constructed as follows

	Mask
	Description

	0x00f
	Data Type (see below)

	0x0f0
	0 if not a primary key column, otherwise primary key ordinal+1

	0x100
	Not Null

	0x200
	Generated Always

10.3.2 Row
The number of columns was provided beforehand, so the row consists of the following for each of the columns: octet 0 if the column contains null, octet 1 followed by data otherwise.
	Code
	Data Type
	Value format

	0
	Variant
	int: typecode, value, or 0 for null

	1
	Integer
	String

	2
	Numeric
	String

	3
	String (also used for XML)
	String

	4
	Timestamp
	long : ticks

	5
	Blob
	{ Octet }

	6
	Row
	{ String, Variant}

	7
	Array, multiset, table
	String { Variant }

	8
	Real
	String

	9
	Boolean
	int

	10
	Interval
	3 longs: years, months, ticks

	11
	Time
	long: ticks

	12
	User Defined Type
	String, { Variant }

	13
	Date
	long: ticks

	14
	Instance
	String, int, long

	15
	Instances
	String int, { long }

The int in Instance format is the database ordinal. For Array, multiset, etc the String is "ARRAY", "MULTISET", "TABLE", or the user defined type name or entity name.
10.4 Exceptions

These are exception replies during the normal traffic sequence
	Server Octet
	Further data
	Description

	0xc
	String, Strings
	Database Exception

	0x11
	String
	Transaction Conflict

	0x10
	String
	Other exception

10.5 Callbacks

If a client has set up a callback, the server may call this function using protocol 0x1f. For Java Persistence. the server may request entity annotations using protocol 0x20. As in the above sections, {X} indicates an int count followed by count Xs.
	Server Octet
	Further data
	Reply
	Description

	0x1f
	String, String, {Variant}
	Variant
	No parent type

	0x1f
	String, String, {Variant} {Variant}
	{Variant} Variant
	With parent type

	0x20
	String
	0x1c { String }
	For @Enum

	
	
	0x1d {Annotation }

{ String {Annotation }}
	For @Entity

The second format above is used so that the fields comprising the owning object for a method are sent to the client and returned (possibly modified).
10.5.1 Annotation format
The format for an Annotation (see section 9.1) is

· A string for the name of the annotation

· A sequence of the following: case

· int 0, String value

· int 1, Annotation

· int 2, { Annotation }

11. The HTTP service

This section sets out to explain the implementation of the HTTP service aspects of the Pyrrho DBMS.
There are four main strands:

· provision of a simple web interface to the DBMS

· an implementation of the SPARQL protocol

· provision of automated reports on record history and record deletion

· provision of the pyrrhodb: protocol for Get and Set of database cells

Most of the implementation described in this section is contained in file HttpService.cs .

11.1 Output classes

These call for a variety of interfaces and output formats: particularly XML in addition to HTML. In addition, SPARQL defines its own output for the SPARQL protocol, and the XslWebOutput class includes an XSL transform.
There are the following main classes for this puropose:

	Name
	Base Class
	Description

	PyrrhoWebOutput
	
	A base class for web output classes

	HttpWebOutput
	PyrrhoWebOutput
	Normal HTML web output

	XmlWebOutput
	PyrrhoWebOutput
	Xml web output

	SparqlWebOutput
	PyrrhoWebOutput
	Output conforming to the Sparql protocol

	XslWebOutput
	PyrrhoWebOutput
	A web output class implementing XSLT filtering

11.2 The Web Service classes
The interesting work is all done by specific classes that hardcode the layout of the associated web pages:
	Name
	Base Class
	Description

	PyrrhoWebServer
	
	A base class for a Http server

	Favicon
	PyrrhoWebServer
	Implements the Favicon standard image service

	WelcomeNoDatabase
	PyrrhoWebServer
	Welcome screen when no databases are connected

	WelcomeDatabase
	PyrrhoWebServer
	Welcome screem when a

	PyrrhoSqlServer
	PyrrhoWebServer
	Results page for an SQL statement

	SparqlWelcome
	PyrrhoWebServer
	Sparql protocol requested but no query: just welcome

	SparqlServer
	PyrrhoWebServer
	Sparql protocol results page

	PyrrhoReports
	PyrrhoWebServer
	Implement XSL database reports (see section 12.2.1)

	SparqlCell
	PyrrhoWebServer
	Supply senatic information about any table cell

11.3 XSL Database Reports
The Pyrrho DBMS has some simple but effective mechanisms for generating reports using XSLT. The trick is to use the web interface to Pyrrho, which is available in the free and enterprise editions of Pyrrho, and uses familiar technology. All the facilities described on this page have been designed so that standard report scripts can be provided on this website, to be run on your machine. In this way none of your data is transmitted to this site. Remember, however, that such scripts are intended for ad hoc queries, not for production use.

One example of such a report is obtained by the web form RecordReport.htm, which gives a readable report on the history of a single field in any single record in any database.

Pyrrho can generate an XML document for a SQL query, and knows how to transform a document with XSL. So to make a report based on a list of SQL queries, you simply provide this along with an XSL transform for each query.
11.3.1 A sample database report
Let us consider a simple example. Suppose we simply want to be able to enquire about the ownership, length, etc of a database Fred on the Pyrrho server running on localhost:52080, to obtain a report of the following form:
Database Fred

Length: 877
Owner: TORE\Malcolm
Authorities: 1
Users: 1
Tables: 2
Procedures: 0

The DatabaseReport sample on www.pyrrhodb.com allows users to request http://localhost:52080/Connection=Files=Fred&Url=http://www.pyrrhodb.com/report/DatabaseReport.txt .

11.3.2 Requesting a report

The contents of DataReport.txt specify how to make the report from a number of queries to the localhost server and corresponding stylesheets on the pyrrhodb server, together with additional text files to supply the HTML headers and footer:

DatabaseReport0.txt
DatabaseReport1.xsl<select "Database","Pos","Owner" from "Sys$Connection"
...
DatabaseReport6.txt

This file has 7 lines, 3 of which are shown above. Sys$ tables such as this are described in the manual Pyrrho.doc in the free download. They have the advantage of always being publicly readable. Log are publicly readable in the personal edition. In other editions they are normally readable only by the database owner, but Enterprise and Datacenter editions can be configured to have an Investigator who can access log files.

11.3.3 Report header and footer

The header and footer are easy: DatabaseReport0.txt is just

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html><body>

and DatabaseReport6.txt is just

</body></html>

Note that "unbalanced" tags like these cannot be placed in xsl files as these must contain valid XML. If you need to use unbalanced tags within your report, you should insert extra text files in the sequence.

11.3.4 XSL Stylesheets

The style sheets are particularly simple. DatabaseReport1.xsl is just

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output omit-xml-declaration="yes" />
<xsl:template match="/root/row">
<h2>Database <xsl:value-of select="Database"/></h2>
Length: <xsl:value-of select="Pos"/>

Owner: <xsl:value-of select="Owner"/>
</xsl:template>
</xsl:stylesheet>

Only the lines in bold are specific to this report. You can download these files and look at how they work.

11.3.5 Parameterised reports

Simple parameters are also supported for the query portions. For example:

http://localhost:8080/Connection=Files=Temp&Url=http://www.pyrrhodb.com/report/TableReport.txt?name=BOOK
shows how to supply a parameter for the report TableReport.txt:

DatabaseReport0.txt
TableReport1.xsl<select * from "Sys$Table" where "Name"='%name%'
DatabaseReport6.txt

It is possible to supply further parameters using & as usual. If you want % to be part of the SQL, double it: %%.

Additional parameters can be set as part of the script, using the syntax

 param := select_Statement

12. References
Crowe, M. K. (2007): The Pyrrho Database Management System, Computing and Information Systems Technical Reports, 38, University of Paisley
Java Persistence Query Language (2006): The Java EE 5 Tutorial, Sun Microsystems (Ch. 27) http://java.sun.com/javaee/5/docs/tutorial/doc/
SPARQL Query Language for RDF (2006): http://www.w3.org/TR/rdf-sparql-query/
SQL2003: ISO/IEC 9075-2:2003 Information Technology – Database Languages – SQL – Part 2: Foundation (SQL/Foundation); ISO/IEC 9075-4:2003: Information Technology – Database Languages – SQL – Part 4: Persistent Stored Modules; ISO/IEC 9075-14:2003: Information technology — Database languages — SQL — Part 14::XML-Related Specifications (SQL/XML) (International Standards Organisation, 2003)

Computing and Information Systems Technical Reports is edited by M. K. Crowe and published by the University of Paisley, Paisley PA1 2BE, Scotland.

© University of Paisley, 2007

All authors of these technical reports are entitled to copy or republish their own work in other journals or conferences. Permission is hereby granted to others for the publication of attributed extracts, quotations and citations of material from these reports. No other mode of publication or copying of any part of this publication is permitted without the explicit permission of the University.

The School of Computing at the University of Paisley has 55 academic staff and 24 researchers, covering the range of subjects from Computing Science to Business Information Systems. This mix of interests offers an opportunity for the development of novel approaches, and the reinterpretation and further development of traditional methodologies taking into account the rate of change in the computing technology, and its usage and impact in organisations. The guiding ethos of these technical reports reflects that of the School.

The editorial address is Prof. M K Crowe, University of Paisley PA1 2BE; tel (+44) 141 848 3300; fax (+44) 141 848 3542.

1

3

4

6

8

6

Root (inner)

Leaves

6

47

_1199615214.vsd
Double-click here and type
notes.

Database File (.pfl)

Database File Segments (.n.pfl)

Physical records (Log$)

Logical Database

SQL processor

Applications

OS tools

Enterprise tools

Client tools

File segments are used for databases larger than 4GB.
Enterprise tools provide facilities for secure backup and mobile checkpoints

