Computer Engineering, VLSI Lab - USB 2.0 µController

[image: image21.jpg]16bit RISC uController Block Diagram

aneE——"] Instruction NWait o
IREnCHr Control IntTaken [@———————
Store Unit Mem Mem zaﬂcm_ 1
Mux Mode ReghEn RegREn RegWEnzegayee Imm Imm WBMux PoCounlEn Ret £0i WER REn ORst [&+——
Ol cd o cuwlp Cil wencw DeCirl ExCin Cirl cirl ol _cul G Cul AuOpctd_ instordata Clk |
SIREr
cu
SRWERCH
R Regbye
SRERCi!
stocerl
« 5
Wode Renl Rz Wen TS v “AluOpCtrl
R g cn ool o W | e g L
Reg feois AluRslt
Addrl
[RegDatal [esoa. Alul
DestReg " ALU
Addr i L
RegFile RegData2 i _—
Branch Taken Cik|« o
N Proc
Addr2 7 4
7] - ——
ClknRst
SRexbelaied MemAddr - Alul o
,nm.l@ Woata ~ Aluz R e 1
MemREn
MemWEn
P Coter
BranchTak leu | mowait
ranchTaken 7
Broc. RMemData e —mint
PC PC CountEn £ol o~ e—mnn_in
Stack PresetAddr hitragen *=i
iremupid: erruptaddr .
Fetchaddr u{a\lv InstAddr
Rinst
ClknRst Ret
e [}
6
. PR i o mCK
. omnRst
Wl oo

Rinst

ABus DBus nBgnt nBreq NOfBUS nREN nWEN

VLSI Laboratory
School of Engineering
Bar-Ilan University
USB 2.0 System Microcontroller
David Shlomov

Roi Shidlovski

Final Project – Forth Year
Computer Engineering

Instructor: Moshe Doron
Academic Supervisor: Prof. Shmuel Wimer
October 2010
41
Introduction

41.1
System Introduction

81.2
Project Introduction

92
Project targets

103
Theoretical background

134
Development environment - Hardware & Software

155
Design Flow

166
System Block Diagram

177
Project Block Diagram

188
Major Building Blocks

188.1
Register File

198.2
ALU

198.3
BIU

228.4
PC

248.5
IR

258.6
Control Unit

279
Modules Definition

279.1
Execution Unit (EU):

299.1.1
Instruction Fetch (IF)

299.1.2
Instruction Decoding (ID)

299.1.3
Execution (EX) and Memory Access (MA) + Write Back

299.2
Internal Memories

299.3
Interface Unit (IU):

3110.
System Requirements

31
External System Clock (50 MHz)

31
Asynchronous Reset (active low)

31
Program Memory (16bit wide)

31
Working environment (16bit wide data memory, Peripherals registers etc.)

3211.
Interfaces

3412.
Slave Peripherals:

3413.
Programmer’s Model (ISA)

3513.1
Instruction Set

3513.2
Instruction set categories

3813.3
Reregisters

3913.4
R-Type instructions

4113.5
I-Type instructions

4313.6
Addressing Modes

4314.
List of Instructions

4515.
 Memory Map

4616.
Functional Verification

4616.1
ALU Test bench

4716.2
Register File Test bench

4716.3
Stack Test bench

4716.4
BIU Test bench

4716.5
Control Unit Test bench

4816.6
PC Test bench

4917.
Concludions and Saummary

5018.
Ideas for continuation

5119.
Bibliographic List

5220.
Appendices

Figure Content
Fig. 1 - µController-based Device Controller Block Diagram……………………………….…….………………………………………… 5
Fig. 2 - USB 2.0 Protocol Engine Block Diagram…………………………………………….……………………………………………………………7
Fig. 3 - USB 2.0 System Block Diagram……………………………………………………………….……………………...………………………………..17
Fig. 4 - 16bit General purpose Microcontroller Block Diagra………………………………………………………………….………….18
Fig. 5 - Register File diagram……………………………………………………………….……………………………………………………………………….19
Fig. 6 - Arithmetic Logic Unit diagram……………………………………………………………………….……………...…..………………………….20
Fig. 7 - Pending Interrupts Array mechanism example……………………………………………………………..……………….……………21
Fig. 8 - Bus Interface Unit Diagram……………………………………………………………………….……………………………….……………………22
Fig. 9 - Program Counter Diagram……………………………………………………………………….…………………………………………………….24

Fig. 10 - Instruction Register Diagram……………………………………………………………………….………….…………………………………..25

Fig. 11 - control Unit Diagram……………………………………………………………………….…………………………………………………….........26

Fig. 12 - five stage pipeline……………………………………………………………………….……………………………………………….…………………..27

Fig. 13 - four stage pipeline……………………………………………………………………….……………………………………………….………………..28

Fig. 14 - three stage pipeline……………………………………………………………………….……………………………………………..………………..28
Fig. 15 - Interrupt controller state machine ………..………………………………………….…………………………………………..……….30
Fig. 16 - Microcontroller pin layout.……………………………………………………………….……………………………………………..……….32
Fig. 17 - Instruction base format……………………………………………………………………….……………………………………….….…………35

Fig. 18 - Program Counter stack example……………………………………………………………………….………………………..…………….40

1 Introduction

1.1 System Introduction

The USB2.0 Device Development System project is composed of the following major building blocks:

· RISC µController

· Protocol Engine (PE)

· Direct Memory Access Controller (DMAC)

· Software Development Kit (SDK)

[image: image1.png].:()

Bar-llan University
19'8-12 NV'D12IIR

[image: image15.png]OXFFFFh(Bak-1)

8INTs x 512BISR
4KB

OXEFFFN(B0K-1)

1024x16bit /O Registers
2KB

OXE7FFh(58k-T)

Data Memory
(Working Area)
26KB

Ox7TFFFR(32k-1)

(0x0000h(0k)

Program Memory
32KB

[image: image16.jpg]

[image: image17.jpg]*

QUARTUS II

System Block Diagram

Fig. 1 µController-based Device Controller Block Diagram
Functional Description

· RISC µController
16bit Core RISC µController.
Tailored to perform as the Control Core of a USB2.0 Device Controller.
Memory-mapped I/O
No indirect commands

Direct indexed commands

Pipeline Architecture is employed for higher throughput / better performance.
The µController includes a Bus Interface Unit (BIU) that supports access to/from external synchronous SRAM, ROM/EEPROM and DRAM memory devices. It also supports System Bus Arbitration with external Master, like DMAC and System Interrupts.

· DMAC
The Direct Memory Access Controller (DMAC) is used to handle data transfers to/from Device Function Cores. It serves USB2.0 Communication Tasks. The DMAC and the µController are both masters contending on the same System Bus bandwidth. The DMAC has the priority in getting access (via arbitration) to the bus, unless the µController is triggered by a Non Maskable Interrupt. The DMAC performs Communication data packet transfers between the Protocol Engine packet buffers and Device Endpoints, responding to Protocol Engine requests.

· Memory Sub-System
The ROM or EEPROM is used as the Program Memory for the µController.
The SRAM and the DRAM serve µController's Data memory.
The Application might include the SRAM and DRAM (and Register Files if needed).

· Protocol Engine
[image: image18.jpg]USB2.0 Device Controller

System Diagram

+Vee -Vss +Vee -Vss
noffbus je——Jnofrous M ek
nbgnt |——4———s{nbent
nbreq [e4———#-|ntreq
T 16bit RISC >{npreq USB2.0-Aware
e F—]clk nController > {ep_dir DMAC
Oscillator —fepn(3:0]
—furst liff1:0]
abus _dbus
FVed Vi i WP 6 mvrnrd abus{15:0] dbus{15:0] [npbwr npbrd nwr nrd neot nwait [23:0][47:0]
t o T R
d
1 || & ||
1bo < : DataBus >
LsB — |+ < a4
Connector AGdTESS BUS
t o $
“D-D Yy vy
it nwrnrd f:’;ho i dbus ntreq wr nrd neot nwait abus dbus
15:0 0]
CLK [15:0] npreq [n:0] [m:0]
uT™I ndack (4—- Function
USB2.0 Protocol ¢p_dir Core 0
UsB20 PHY K — Engine epn[3:0] = »epa3:0]
iff1:0] e > it 1:0] —
—sfrst L T 4 & 1
T T npbrd [+ ¢

f

“Vee

f

f

f

Vs

[image: image19.jpg]DOul15.0]-reg0

Dinft5.0 > E==>00ut15.0]

[image: image20.jpg]nRst=0

Pendint=0

Pondint=0 ntTaken[2:0] = INTNUM

InterruptAddr = INTADDR

Pendint1=0
Wait4EO!

Fig. 2 USB 2.0 Protocol Engine Block Diagram

Integrated SIE is a USB2.0 High-speed or Full-speed Packet Protocol Sequencer.
The packet protocol of the USB bus consists of tokens, packets, transactions, and transfers.
The SIE performs synchronization pattern recognition, CRC check/ generation, Packet Identifier PID decoding and verification, address recognition and handshake evaluation/response.
· USB 2.0 Transceiver chip (PHY)
The PHY is basically a Serializer-Deserializer (SERDES), bit stuffer/un-stuffer and the NRZI encoder/decoder, which also handles the low level USB protocol and the signaling task.
While transmitting data, the PHY serializes data and generates SYNC and EOP fields. It also performs needed bit stuffing and NRZI encoding. Likewise, while receiving data, the PHY de-serializes incoming data, stripping SYNC and EOP fields and performs bit un-stuffing and NRZI decoding.
Handles Speed Enumeration, Suspend/Resume, Synchronization.

· USB2.0 SDK
The SDK is a windows USB2.0 Device Driver Creator, which supports every type of Custom Hardware available by creating Assembly code which can be complied into the µController.
The main purpose of the SDK is to simplify the code creation process so that everyone can create basic template Device Drivers for any USB2.0 Device.
 The SDK includes an Assembler-Compiler tuned for the 16bit µController.
Code generation includes programming of the Protocol Engine Configuration registers and the DMAC Configuration Registers, in order to perform the USB Communication Tasks (handling the pipes used by the Host USB Driver to communicate with the Device resources (Endpoints).
The compiler takes care of µController data hazards by incorporating NOPs into the generated code.

1.2 Project Introduction

Microcontrollers are hidden inside a surprising number of products these days. If your microwave oven has an LED or LCD screen and a keypad, it contains a microcontroller. All modern automobiles contain at least one microcontroller, and can have as many as six or seven: The engine is controlled by a microcontroller, as are the anti-lock brakes, the cruise control and so on. Any device that has a remote control almost certainly contains a microcontroller: TVs, VCRs and high-end stereo systems all fall into this category.
The idea that Microcontrollers are everywhere, sometimes even if we are not aware, attracted us to this project.

The chip design industry is where we see ourselves further in our professional lives, therefore we saw in this project an opportunity to experience, hands on, the role of a chip design architect. To design from scratch a working and viable Microcontroller that won't fall short of some of the simple microcontroller out there, and to go through the entire process – from idea to chip.

We have learned, during our work on this project, that the transition between ideas to implementation goes through many stages that can be challenging, interesting and even frustrating.
We started in Preparing a Requirement Specification based on the instructions we were given. From there we continued by breaking the Microcontroller to its basic components and designing them. After that came the coding of those components in Verilog (the HDL we chose).

After all of the components were coded and tested, via test benches, we started the process of combining them all together, components integration. Finally, we synthesized the design and demonstrated its correct and precise functionality, on an FPGA Board.
2 Project targets
There are 4 primary goals to this project:

1. Design and implement a 16bit general purpose Microcontroller complete with its own micro code.

2. Learn different design methodologies, struggle with many issues in order to resolve logic problem.

3. Learn how to use design, simulation and synthesis tools that are in use in the chip design industry all over the world.

4. Working closely with the SDK team to develop a Compiler for the Microcontroller's micro code.
3 Theoretical background

Reduce Instruction Set Computer (RISC)

In the early 1980s, a number of computer designers were questioning the need for complex instruction sets used in the computer of the time. In studies of popular computer systems, almost 80% of the instructions are rarely being used. So they recommended that computers should have fewer instructions and with simple constructs.

This type of computer is classified as reduced instruction set computer or RISC. The term CISC is introduced later to differentiate computers designed using the ‘old’ philosophy.

The first characteristic of RISC is the uniform series of single cycle, fetch-and-execute operations for each instruction implemented on the computer system being developed. (Daniel Tabak, 1990)
A single-cycle fetch can be achieved by keeping all instructions in a standard size. The standard instruction size should be equal to the number of data lines in the system bus, connecting the memory (where the program is stored) to the CPU. At any fetch cycle, a complete single instruction will be transferred to the Microcontroller. For instance, if the basic word size is 16 bits and the data port of the system bus (the data bus) has 16 lines, the standard instruction length should be 16-bits.

Achieving uniform (same time) execution of all instructions is much more difficult than achieving a uniform fetch. Some instructions may involve simple logical operations on a Microcontroller register (such as clearing a register) and can be executed in a single Microcontroller clock cycle without any problem. Other instructions may involve memory access (load from or store to memory, fetch data), and may be impossible to be executed in a single cycle.
Ideally, we would like to see a streamlined and uniform handling of all instructions, where the fetch and the execute stages take up the same time for any instruction, desirably, a single cycle. This is basically one of the first and most important principles inherent in the RISC design approach. All instructions go from the memory to the Microcontroller, where they get executed, in a constant stream. Each instruction is executed at the same pace and no instruction is made to wait. The Microcontroller is kept busy all the time.

Thus, some of the necessary conditions to achieve such a streamlined operation are:

· Standard, fixed size of the instruction, equal to the computer word length and to the width of the data bus.

· Standard execution time of all instructions, desirably within a single Microcontroller's cycle.

While it might not be practical to expect that all instructions will execute in a single cycle, one can hope that at least 75% should.
Which instructions should be selected to be on the reduced instruction list? The obvious answer is: the ones used most often. It has been established in a number of earlier studies that a relatively small percentage of instructions (10 – 20%) take up about 80% – 90% of execution time in an extended selection of benchmark programs. Among the most often executed instructions were data moves, arithmetic and logic operations.

As mentioned earlier, one of the reasons preventing an instruction from being able to execute in a single cycle is the possible need to access memory to fetch operands and/or store results. The conclusion is therefore obvious – we should minimize as much as possible the number instructions that access memory during the execution stage. This consideration brought forward the following RISC principles:

· Memory access, during the execution stage, is done by load/store instructions only.

· All operations, except load/store, are register-to-register or immediate-to-register, within the Microcontroller.

In order to facilitate the implementation of most instruction as register-to register or immediate-to register operations, a sufficient amount of Microcontroller general purpose registers has to be provided. A sufficiently large register set will permit temporary storage of intermediate results, needed as operands in subsequent operations, in the Microcontroller Register File. This, in turn, will reduce the number of memory accesses by reducing the number of load/store operations in the program, speeding up its run time.

The characteristics of RISC architecture are summarized as follow:

· Single-cycle instruction execution.

· Fixed-length, easily decoded instruction format.

· Relatively few instructions.

· Relatively few addressing modes.
· Memory access limited to load and store instructions.

· All operations done within the registers of the Microcontroller.
· Hardwired rather than Micro-programmed control unit.

· Relatively large (at least 16) general purpose register file.
In this project we have tried to design a General Purpose Control Core for USB2.0 Device Development using the above set of rules.
After exploring various Control Cores Architectures and their Instruction Sets, it was decided to employ RISC Architecture, little-endian data format and fixed size Instruction length (Like ARM Thumb and the Atmel AVR AT90S1200 Instruction set). It was also decided, together with the Compiler Design Team, to have the Compiler manage Data hazards rather than complicating the Core Execution Pipeline design (registers score-boarding for example). The above decisions made the Design, Implementation and verification, straightforward and lowered code storage requirements.
Future uses of our Microcontroller consist of Robotic, automatic watering systems, alarms etc.
4 Development environment - Hardware & Software
When approaching a task, as difficult as chip design, it is very important to choose the tool you will be working with very carefully.

The following factors influenced our choice of tools:

a. FPGA Board
The only FPGA boards that where available for our use in the VLSI lab were Altera FPGA boards. We chose to work with the DE2-70, Cyclone II FPGA-based board, because we have worked with it before and know its features. This particular board has features we wanted to user for our final demonstration (LEDs, 7-Seg Displays and switches).
b. HDL (Hardware Description Language)
We have faced a dilemma when choosing an HDL for our project. We have learned in several courses the VHDL language, so we are familiar with its syntax and could start programming immediately. However, the Verilog language is the most common language used in the Israeli Industry. Given that this is our final project, we've decided to learn a new HDL in order to prepare ourselves for the real world.
c. Development Environment
There are several IDE (Integrated Development Environment) for the Verilog Development.
Never the less, we have chosen to split our development environment into 3 different parts:

1. Editor – we used Notepad++. While not being an HDL specific editor it is a great tool for editing that has many capabilities that only a generic editor can have (such as file comparison, word highlight, function collapse etc).

2. Simulator – we used two different simulators while working on the project, the "Mentor Graphics ModelSim" and the "Cadence Incisive Enterprise Simulator". Both simulators have a Verilog compiler embedded in them and both have GUI. The reason we use two simulators is that we saw an opportunity to learn and experience two different tools that are in use by the chip design industry while simultaneously retest our design logics in another simulator.

3. Analysis and synthesis
As a result of our choice to work with the Altera FPGA board, we chose the Altera "Quartus II" application for the microcontroller Analysis and synthesis tool.

5 Design Flow

[image: image2.png]* Learning the system requaierments.
* Extrapulating the requaierments for the Microcontroller.

* Composing a specification file base on the system requaierments.
* compile a list of commands and define the programer's ISA (Insruction Set Architecture)

* Defining all aspects of the architecture like:
® 16bit Vs. 32bit ; RISC Vs. CISC ; etc.

* Drawing a high level design.
* Defining the interaction between the blocks of the system.

* Drawing a low level design
* Defining exact wiring, inputs and outputs of every component.

* Verilog Module Coding,writing test-benches and running simulations.

* Design integration and Verifying correct logical behavior of the design.

* Defining test and demo system, together with the compiler team.

* Mapping the design into Altera DE2-70 FPGA board.

Board mapping

» verifying functionality on the Altera DE2-70 FPGA board.

6 System Block Diagram

Fig. 3 USB 2.0 System Block Diagram

7 Project Block Diagram

Fig. 4 16bit General purpose Microcontroller Block Diagram

8 Major Building Blocks
8.1 Register File
A small and fast memory which stores data and addresses associated with the instruction being carried out. The register file consists of 15 registers each one is of 16bits with an additional 8bit register that holds the interrupt mask (ICU).
During architecture definition process we've decided NOT to implement a register stack, as the Intel's 8086 microcontroller, instead we've created a secondary register file for interrupts use only. The idea is that during the transition from a normal program flow to an interrupt service routine (ISR) flow, the microcontroller doesn't have to "save" all GP registers, in order not to lose uses' data, by pushing them into a stack (a process that will take a lot of time) and of course prevent the opposite process. Instead, when the system jump into an ISR, the normal register file and the secondary, shadow, register file switch roles.
The secondary register file consists of 16bit 16 registers (the ICU is replaced by a regular register because it is not needed in the interrupt mode).
The Register File is a three port module that can read data from two registers and write to a third one (reading and writing to and from the same register at the same clock is not possible and enforced by the compiler (data hazard avoidance).

[image: image3.emf]RegByte

WEnCtrl

sMux

Reg

Addr1

sMux

Reg

Addr2

sREnCtrl1

sRWEnCtrl

sREnCtrl2

sIcu

sRegData1

sMux

WBData

sReg

Data2

sModeCrtl

sIR[8:11]

RegFile

Clk nRst

Reg

Addr1

DestReg

Addr

WBData

REn1

Ctrl

RegData2

RegData1

Reg

Addr2

Icu

Wen

Ctrl

REn2

Ctrl

Mode

Ctrl

RegByte

WEnCtrl

R

0

R

0

R

0

R

0

R

0

R

4

R

0

R

0

R

8

R

0

R

9

R

0

R

0

R

0

R

0

R

14

R

0

R

1

R

2

R

3

R

0

R

5

R

6

R

7

R

8

R

0

R

10

R

11

R

12

R

13

R

14

R

15

Fig. 5 Register File diagram
8.2 ALU

Arithmetic Logic Unit. As the name suggests, this component is in charge of all the arithmetic and logic operations within the microcontroller. All ALU calculations are made in 2’s compliment data format. The type of logical or arithmetical operation is determined by the “AluOpCtrl” code, generated by the Control Unit. This 5 bits vector specifies ALU module required operation. Each MicroCode operation sends to the ALU an “AluOpCtrl” code even if its meaning is “Do Nothing” (NOP).

The other two inputs are the operands (Alu1 and Alu2), when Alu1 is always fed from the Register File while Alu2 can be read from the Register File or from the sign-extended immediate number (value), entered by the programmer.

The ALU holds, in a 2 bit Flag Register, the “Zero flag” and the “Overflow flag”. These two flags are set or cleared based on the result of the current calculation. Some calculations affect the flags while others do not, but only the conditional branch operations use them.
This Unit outputs several signals. First is the “AluRslt” which, carries out the result of the last ALU operation. Another output is the “Branch Taken” signal that is set when a branch command is activated (the condition is made or it is a Non Conditional branch).

The last output is the “Proc” signal, indicating that the branch command is of “Proc” kind (Jmpp, Jzp, Jcp, Jnzp or Jncp). It actually tells the PC to save the current address as a return address.

[image: image4.emf]sBranch

Taken

sAluOp

Ctrl

sRegData1

sMux

Alu2

sProc

sAlu

Rslt

ALU

Clk

nRst

Alu2

Alu1

AluRslt

Branch Taken

AluOpCtrl

Proc

Adder

Fig. 6 Arithmetic Logic Unit diagram
8.3 BIU

Bus Interface Unit. This component is the Microcontroller’s only connection to the outside world. All data in or out of the Microcontroller, including instructions, interrupts and bus requests goes through the BIU. The BIU also contains the Bus Arbitration Unit that is in charge of controlling who is the bus master at any given time.
The BIU has many inputs and output. Some of the inputs are directly link to an output and do not go through any process inside the BIU, the purpose of that is to keep the BIU as the Microcontroller’s only connection to the outside world, i.e, contains all Device I/O Pads.

The “InstOrData” signal is generated by the Control Unit and indicates to the BIU if the next read cycle is Data load or Instruction fetch. It dictates the content to be transmitted over the Address Bus and determines if the received data will be directed to the “Rinst” internal bus (Instruction Fetch) or to the “RMemData” internal bus (data loaded by executing the load instruction).

“MemREn” input is directly wired to the “nREn” output.

 “MemWEn” input is directly wired to the “nWEn” output.

“nWait” input is directly wired to the “NWite” output.

“nOffBus” input is directly wired to the “NoBus” output.

A main component of the BIU is the interrupt mechanism. The BIU receives the ICU (interrupt mask) from the Register File and when a maskable interrupt arrives, it goes through the mask.
If that specific interrupt is enabled then the corresponding location in the Pending Interrupts Array, will be set and a 4 bit word, “IntTaken”, is issued to the Control Unit, composed of an Interrupt Taken indication bit (the MSB) and the currently served interrupt number (0-7 in binary).
The Pending Interrupts Array holds the served interrupt cell in a SET state until the “EOI” (End Of Interrupt) signal is issued by the Control Unit and then clears it. When an interrupt is taken, the BIU outputs the ISR starting address to the PC, to be used as a preset address.
The Pending Interrupts Array mechanism is designed like this (a sample cell diagram):

[image: image5.emf]Q

Q

SET

CLR

D

Clk

ICU

nInt

Fig. 7 Pending Interrupts Array mechanism example

Selection of interrupt to be served from all current pending interrupts (Interrupt Taken) is performed via priority encoder.
Priorities are defined in descending order:
NMI -> Int7 (Int1.

[image: image6.emf]7

Int

ABus

DBus

16

16

nBgntnBreq nREnnWEn

nM_Int

nOffBus

nWait

BIU

Icu

MemREn

MemAddr –Alu1

WData –Alu2

RMemData

nRst

Clk

RInst

InstAddr

MemWEn

Int

IntTaken

nWait

InstOrData

NoBus

nM_Int

InterruptAddr

IntTaken

EOI

NWait

16

16

Fig. 8 Bus Interface Unit Diagram
8.4 PC
The Program Counter module is responsible for calculating the address of the next instruction, to be fetched from the system code memory. The Program Counter module sends the address to the BIU unit via the “FetchAddr” internal bus, which retrieves the actual instruction from Memory.

During consecutive program code execution, the instructions are stored in code memory in an increasing order, but in two cases the consecutive program code execution flow is disrupted:
1. JMP to subroutine.

2. External INTERUPT is taken.

During these events, the Program Counter pointer is moved (Branched) to a different memory address, instead of simply incremented.

Following the completion of the subroutine (or the ISR), the µController issues the instruction address that was pointed just before the µController was disturbed, so the return address should be stored.

To meet all above requirements we constructed the Program counter unit from 2 major blocks:

1. Stack

2. 16bit Counter

Stack module – First in Last out (FILO) mechanism that is designed for nested routines (8 routines max.). When the program branches, due to JMP or INT, the return address is saved in the Stack.

The “Proc” signal indicates that the program branches into a procedure and initiates the Push command, which stores the return address in the stack.

The “RET” signal indicates that the Routine or INT has been completed and initiates the POP command, which return the previous address from the Stack.

16bit Counter – During normal, consecutive program execution, the Program Counter receives the signal “CountEn” and increments current address by one. Address is incremented by 16bit word steps.
If the program branches then the “CountEn” signal is negated (set to '0') and the "PresetEn" signal Is set to '1' to indicate that the next instruction address will be generated by presetting the Program Counter, either by jump to or return from operations.

[image: image7.emf]Program Counter

PC 8 deep 16bit

wide Stack

Push

Pop

nRst Clk

DataIn

DataOut

16bit Program Counter

nRst Clk

pc_inc

pc_preset_ena

pc_preset

q

CountEn

Jmp

Jc, Jz

Branch

Taken

FetchAddr

PresetAddr

Ret

nRst Clk

PresetEn

1 0

16

16

16

16

16

s_PresetAddr

1

s_DataOut

s_DataIn

+

Fig. 9 Program Counter Diagram
8.5 IR

The Instruction Register is basically a regular 16 bit register with the addition of an "Enable" signal.
The Instruction Register is used as the final destination of the instruction at the end of the pipe line Fetch stage. From there the instruction is distributed to other parts of the Microcontroller (i.e. Register File, Control Unit and Alu) to be processed according to the data.

Fig. 10 Instruction Register Diagram
8.6 Control Unit

The Control Unit is basically the "Brain" of the Microcontroller. Its duty is to distribute control signals across the device and to time the different stages of the pipeline. Each system clock the Control Unit receives a 16bit instruction, disassemble it and according to the first 4 bits (which constitute the OpCode), the Control Unit sends out the control signals that operate the Microcontroller.

The control signals are divided into two types:

1. Decode Signals

2. Execute signals

The two types of control signals are different by the time they are issued by the Control Unit.
Decode Signals are send out at the beginning of the "Decode" stage of the pipeline. They are hardwired and do not go through registers, this is necessary because the Control Unit receives the instruction also at the beginning of the "Decode" stage of the pipeline.

Execute signals are delayed by one system clock and then sent out to the rest of the components.
The execute stage of the pipeline occurs one clock after the decode stage, therefore it is necessary to delay the execute signals of the specific command.

Some ALU operations differ not by the “AluOpCtrl”. For example, the ShtR and ShtL differ by the sign of the immediate value (positive sign means shift left and a negative sign means shift right).

[image: image8.emf]sIR[0:15]

sMemREn

Ctrl

sImm

DeCtrl

sREnCtrl1

sRWEnCtrl

sPcCountEn

Ctrl

sStore

Mux

Ctrl

sREnCtrl2

sWB

Mux

Ctrl

sMemWEn

Ctrl

sAluOp

Ctrl

sRet

Ctrl

sImm

ExCtrl

sModeCrtl

sRet

Ctrl

Control

Unit

Clk

nRst

RegREn

Ctrl2

RegREn

Ctrl1

RegWEn

Ctrl

Imm

ExCtrl

Store

Mux

Ctrl

AluOpCtrl

Mem

WEn

Ctrl

Mem

REn

Ctrl

WBMux

Ctrl

Instruction

PcCountEn

Ctrl

Ret

Ctrl

Mode

Ctrl

IntTaken

InstOrData

NoBus

EOI

Ctrl

IREnCtrl

NWait

RegByte

WEnCtrl

sInstOrData

Ctrl

Fig. 11 control Unit Diagram
	
	DeCode Stage
	Execution Stage

	
	
	

	
	StoreMux
Ctrl
	Mode

Ctrl
	RegREn
Ctrl1
	RegREn
Ctrl2
	WB
Mux
Ctrl
	IREn
Ctrl
	Imm
Ctrl
	Pc
Count
En

Ctrl
	RegW

En
Ctrl
	MemW

En
Ctrl
	EOI
Ctrl
	Ret
Ctrl
	MemREn
Ctrl
	AluOp

Ctrl
	Int
Or
Data

	NoBus
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	ΦΦΦΦ
	0

	IntTaken
	Φ
	Interrupt
	Φ
	Φ
	Φ
	1
	Φ
	Φ
	Φ
	Φ
	Φ
	Φ
	Φ
	ΦΦΦΦ
	Φ

	Nop
	Φ
	No Cahnge
	0
	0
	Φ
	1
	Φ
	1
	0
	0
	0
	0
	1
	00000
	Φ

	Jc
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	00001
	0

	Jz
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	00010
	0

	Jmp
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	00011
	0

	Jcp
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10011
	0

	Jzp
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10100
	0

	Jmpp
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10010
	0

	JncP
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10101
	0

	JnzP
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10110
	0

	Jnc
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10000
	0

	Jnz
	0
	No Cahnge
	1
	0
	Φ
	1
	0
	0
	0
	0
	0
	0
	1
	10001
	0

	Movb
	0
	No Cahnge
	0
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	00100
	0

	Movw
	0
	No Cahnge
	1
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	00101
	0

	ShtR
	0
	No Cahnge
	1
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	01001
	0

	ShtL
	0
	No Cahnge
	1
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	00110
	0

	Loop
	0
	No Cahnge
	1
	1
	0
	1
	1
	1
	1
	0
	0
	0
	1
	00111
	0

	Add
	0
	No Cahnge
	1
	1
	0
	1
	1
	1
	1
	0
	0
	0
	1
	01000
	0

	Lod
	0
	No Cahnge
	1
	0
	1
	1
	1
	0
	1
	0
	0
	0
	1
	ΦΦΦΦ
	1

	Str
	1
	No Cahnge
	1
	0
	Φ
	1
	1
	0
	0
	1
	0
	0
	0
	ΦΦΦΦ
	1

	And
	0
	No Cahnge
	1
	1
	0
	1
	1
	1
	1
	0
	0
	0
	1
	01011
	0

	Or
	0
	No Cahnge
	1
	1
	0
	1
	1
	1
	1
	0
	0
	0
	1
	01100
	0

	Xor
	0
	No Cahnge
	1
	1
	0
	1
	1
	1
	1
	0
	0
	0
	1
	01101
	0

	Addi
	0
	No Cahnge
	1
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	01110
	0

	RetI
	0
	NORMAL
	0
	0
	Φ
	1
	Φ
	0
	0
	0
	1
	1
	1
	01111
	0

	RetP
	0
	No Cahnge
	0
	0
	Φ
	1
	Φ
	0
	0
	0
	0
	1
	1
	01111
	0

	Mux up side = 1

	Mux down side = 0

	Φ = 0

	

Table 1 - Control Unit signal for DeCode Stage and Execution Stage

9 Modules Definition
9.1 Execution Unit (EU):
µController Pipeline
An instruction pipeline is a technique we used in an attempt to increase the Microcontroller's instruction throughput (the number of instructions that can be executed in a unit of time).

The fundamental idea is to split the process of the Microcontroller's instruction into a series of independent steps, with storage at the end of each step (pipeline registers). This allows the computer's control unit to issue instructions at the processing rate of the slowest step, which is much faster than the time needed to perform all steps at once. In the case of our Microcontroller the length of the instruction is constant and the rate for all of the pipeline's stages is identical, therefore, for each system clock as one instruction enters the pipeline, another one leaves the pipeline.

The classic RISC pipeline is usually broken into five stages with a set of flip flops between each stage.

[image: image9.png][F T o TEX [mEM
F | D | Ex 5]
F | D MEM| WB
IF EX_|MEM| WB
ID | EX |MEM| WB |

Basic five-stage pipeline in a RISC machine:

IF = Instruction Fetch,

ID = Instruction Decode,
EX = Execute,

MEM = Memory access,

WB = Register write back

The vertical axis represents successive instructions; while the horizontal axis represents time. So in the green column, the earliest instruction is in WB stage, and the latest instruction is undergoing instruction fetch.
Fig. 12 five stage pipeline
In this project, as we decided that the Microcontroller is of a LOAD/STORE architecture (meaning that only load/store commands can access external data) and due to the decision that memory access is based on direct addressing only, then we could combine the EX, and MEM stages of the pipeline because the ALU and MEM access cannot happen at the same time.
The result is a four-stage pipeline:
[image: image10.png]IF ID_[EXIMEM
IF D wB
IF EXIMEM| WB
D [EXMEM| WB

Fig. 13 four stage pipeline
After considerable desiccations we came to the conclusion that if we remove the flip-flop at the end of the EX/MEM stage we will be able to shorten the pipeline even more and include the Write Back stage into the EX/MEM stage.

The result is a three-stage pipeline:

[image: image11.png]D

IF

EXIMEM + WB]

D

[EX/MEM + WB]

Fig. 14 three stage pipeline

The end result is that the Microcontroller has a three-stage pipeline, with a one clock period for each stage concluding that every instruction will be carried out within three clocks time.

9.1.1 Instruction Fetch (IF)
Instruction Fetch stage – fetch next instruction from instruction memory and forward it to the next appropriate subsystems.

This stage includes the PC (Program Counter) that points to the current instruction. The PC also holds 8 previous instruction addresses of JMP, BRUNCH and Interrupts. The end of the stage is at the Instruction Register.
9.1.2 Instruction Decoding (ID)

General Propose Register File – Decodes the instruction, fetches the appropriate operands and sends it out to the next stage. In action, there are two Register Files. One for normal operation and another one, shadow, for interrupt usage only.
Control Unit - Generates all the Control Signals (i.e. ALU operation signals, memory read/write enable, etc). Also works at the following stage.
9.1.3 Execution (EX) and Memory Access (MA) + Write Back
At this stage instruction Execution OR Memory Access occurs.
Execution - Contains the Arithmetic Logic Unit (ALU) that performs all internal calculation, arithmetic calculation (i.e. add, sub, etc) and logic functions (i.e. and, or, xor etc). Arithmetic calculations use 2’s Complement data format. Logic functions are bitwise operations.

Memory– Performs as a ghost component that is working directly with the BIU in order to transmit and receive data to/from external memories. Data and memory address are stored in the Register File.

Memory access control signals (i.e. read/write enable), are generated by the control unit.

Write Back – Selects the data to be written back to the Register File. A mux unit, according to control unit select signal, passes either the ALU calculation result or the data extracted from memory via the BIU, to the Register File.
9.2 Internal Memories

9.1.4 Register File – (15x16bit) + (16x16bit) + 1x8bit registers (504bit = 63Byte)
9.1.5 PC – 8x16bit (128bit = 16Byte)
9.3 Interface Unit (IU):
· Bus Interface Unit
· All external memory and I/O transactions are performed via the BIU.
· Bus Arbitration Unit

· Performs priority bus arbitration and access (request-grant) with one external bus Master
(most likely, DMAC).
The priority between the two Bus Masters is defined by a priority algorithm.
· If the µC is interrupted by an NMI while not being the Bus Master, it immediately negates the Bus-grnt signal and the current Bus Master (DMAC), relinquish the Bus as soon as it completes the current data item transfer, (using the "nOffBus" signal as indication).
· If the µC is interrupted by an enabled Masked Interrupt while not being the Bus Master, it allows the current Bus Master (DMAC), to complete its current data transaction but blocks additional bus requests, until the completion of the current ISR.
· Interrupt Controller

The interrupt controller unit is dedicated to handle incoming interrupts, interrupt priority and masking of Maskable interrupts.

Maskable interrupts register is contained within the register file (Register 15).
When an interrupt occurs the following steps happen:

a. The interrupt signals "goes through" the mask register (R15) in the BIU.

b. If the specified interrupt is enabled then, set the correct bit in the pending interrupt "array".
c. A state machine inside the BIU combs the pending interrupt "array" and execute interrupt according to increasing order (int1 has the lowest priority while int8 (non maskable interrupt) has the highest priority.

10. System Requirements
· External System Clock (50 MHz)

· Asynchronous Reset (active low)

· Program Memory (16bit wide)

· Working environment (16bit wide data memory, Peripherals registers etc.)

11. Interfaces
The - µController interface consists of:

16 bit - data bus Input 16 input signals (pins)

 16 bit - data bus Output 16 output signals (pins)
16 bit - address bus (output, 3-stated) pins
External Clock input pin
Asynchronous Reset input pin
Maskable Interrupts 7 input pins
Non Maskable Interrupt input pin

[image: image12.emf]Button

16bit

MicroConroller

Clk

nRst

Nm_int

nIO_REn

nIO_WEn

nWait

nBreq

nOffBus

nBgnt

V

c

c

G

r

d

1

6

b

i

t

A

B

u

s

Vcc Grd

16bit DBusIn

V

c

c

G

r

d

Vcc Grd

16 bit DBusOut

7

b

i

t

I

n

t

e

r

r

u

p

t

s

Fig. 16 Microcontroller pin layout
Note: Splitting data bus into input and output bus, is due to FPGA limitations (no internal 3's
 Buffers) and verification requirements (using on-FPGA SRAM module for code and data)

Total sum of interface pins: 72 pins

	Pin Name
	Pin #
	Direction
	Active Level
	Description

	DBusIn [15:0]
	16
	In
	Drive/3'S
	Transports data from and to the memory and I/O devices.

	DBusOut [15:0]
	16
	Out
	Drive/3'S
	Transports data to and to the memory and I/O devices.

	ABus [15:0]
	16
	Out
	Drive/3'S
	Transports memory address to be read from OR write to.

	Clk
	1
	In
	
	External system clock.

	nRst
	1
	In
	Low
	Asynchronous reset.

	Int
	7
	In
	Low
	7 prioritize external interrupts.

	Nm_int
	1
	In
	Low
	1 Non Maskable external interrupt.

	nIO_REn
	1
	Out
	Low
	Write enable for the memory.

	nIO_WEn
	1
	Out
	Low
	Read enable for the memory.

	nWait
	1
	In
	Low
	Wait state form slow memory or I/O devices.

	Vcc
	4
	In
	High
	Vcc (main power), Technology dependant (3.3/2.5V)

	Grd
	4
	In
	Low
	Ground.

	nBreq
	1
	in
	High
	Bus request from DMAC.

	nOffBus
	1
	In
	Low
	DMAC declares that he is offBus

	nBgnt
	1
	out
	Low
	Bus grant TO DMAC

12. Slave Peripherals:

· Program Memory

· Working Area/Data Memory

· Memory-mapped I/O Peripheral Registers

· Protocol Engine

· DMAC
13. Programmer’s Model (ISA)
13.1 Instruction Set

There is always a trade off between compactness of code and CPU performance. In accordance with the RISC philosophy, all -RISC instructions are one word (16bit) long and have fixed format for easy decoding. The meaning of some fields in the instruction format is fixed and cannot be altered. The designed RISC Microcontroller is a 16bit signed architecture (2’s Complement) and can support up to 64KWord (
[image: image13.wmf]16

2

) of memory space. It supports a LOAD/STORE type architecture where memory access is done by specific instructions ONLY. Data in memory is stored as a signed 16 bit words.

The instruction set is divided into two broad patterns:

1. R-Type Instructions.

2. I-Type Instructions.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Rs2
	Rs1
	RD
	Op Code

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Immediate
	Rs
	Op Code

Fig. 17 Instruction base format
Op code – 4bit – represents the operation code.

RD – 4bit – destination register.

Rs1/ Rs – 4bit – first source register.

Rs2 – 4bit – second source register.
Immediate – 8bit – Immediate number.
13.2 Instruction set categories

a. Data Movement Instructions

This category includes MOVW and MOVB instructions.
1. MOVW - (move a 16bit word) is designed to move data between two general-purpose
registers. In the above instruction the second operand (Rs2) is redundant and is ignored.
2. MOVB - (move an 8bit Immediate) the 8bit immediate (represented in 2's compliment) will be copied into the 8 lower bits of the destination (Rd) register.
* No flag changes occur in both cases because in moving content of one register to another, no arithmetic, logic or shift operations are involved.
b. Data Manipulation Instructions (Logical and Arithmetic operation)
This category includes all of the ALU instructions for Arithmetic (Add, Addi),
Logical Operation (And, Or, Xor) and shift (Shift left/right) operations.
Logical Operation such as AND, OR etc. are performed bitwise on the two source operands while the result is written to a third register, the destination register (there is no prevention that the destination register will be identical to one of the source registers)
Most of these instructions support Register-Addressing mode only, except Addi and Shift instructions.
For the Shift instructions, a shift "count" is provided by an 8bit immediate (represented in 2's compliment). If the immediate number is positive then the Shift operation will be a Shift LEFT, else, if the immediate number is negative then the Shift operation will be a Shift RIGHT.

* Flags are changed to reflect the result of the Data Manipulation operation.
c. LOAD/STORE

The microcontroller is of a LOAD/STORE type architecture where memory access is done by specific instructions ONLY. These instructions are the LOAD and STORE instructions that are used to access system memory or memory-mapped I/O Devices for read and write operations.
These operations are the only operations data can be accessed as a 16bit signed word only.
Both STORE and LOAD instructions support direct addressing mode only.
d. Program flow control Instructions

Conditional and Unconditional jumps constitute this group. This set of instructions is used to translate decision boxes in flow charts of a program. The instructions support Absolute addressing mode. This batch of instructions also contains the LOOP command that uses continues conditional branch to simulate loops in the code and the RET command that enables the programmer to indicate the end of a procedure OR an Interrupt depending on the label (RetI OR RetP).
The Unconditional jump commands are:

1. Jmp – jump unconditionally to a Label, do NOT save a return address.

2. Jmpp – jump unconditionally to a Label marking a procedure, SAVE the return address.

The Conditional branch commands are:

1. Jc – jump to a label if Overflow flag is set to '1', do NOT save a return address.

2. Jz – jump to a label if Zero flag is set to '1', do NOT save a return address.

3. Jnc – jump to a label if Overflow flag is set to '0', do NOT save a return address.

4. Jnz – jump to a label if Zero flag is set to '0', do NOT save a return address.

5. Jcp – jump to a Label marking a procedure if Overflow flag is set to '1', SAVE the return address.
6. Jzp – jump to a Label marking a procedure if Zero flag is set to '1', SAVE the return address.

7. Jncp – jump to a Label marking a procedure if Overflow flag is set to '0', SAVE the return address.

8. Jnzp – jump to a Label marking a procedure if Zero flag is set to '0', SAVE the return address.

* Conditional branches are based on the condition on the flags. After a branch is taken, the correct Flag is cleared.

e. Miscellaneous Instructions

The only instruction in this section is the NOP instruction.
The NOP instruction (short for "No Operation") is meant for the use of the compiler to be inserted between two other instructions when needed by the pipeline (Data hazard avoidance).
Example:

Programmer's code - two consecutive instructions:
Add R3,R2,R1 (R3=R2+R1)
Add R4,R1,R3 (R4=R1+R3)

The compiler adds a NOP command between the source instructions to avoid Data hazard
 (R3 is not be ready with the correct value for the second instruction).
Compiler output code: (represented as a binary file, of course)
Add R3,R2,R1 (R3=R2+R1)

NOP

Add R4,R1,R3 (R4=R1+R3)
13.3 Reregisters

GENERAL-PURPOSE REGISTERS
There are 15 general-purpose registers, designated R0 through R14. Registers R0 through R14 can be used for any purpose such as holding variables, addresses, or index values.
In addition, there are 16 ghost general-purpose registers that are active only in interrupt mode. In that way, all the data that is stored in the 15 original registers is saved and the µController has a complete set of 16 General Purpose Registers to work with in interrupt mode.
The transition between NORMAL and INTERRUPT modes occurs automatically.
DEDICATED MASKED INTERUPPT REGISTER

A 7bit wide register that holds the Enable/Disable state of all the 7 Maskable interrupts.

This register is located inside the register file and is called R15.
In interrupt mode R15 serves as a regular 16bit general-purpose register.

DEDICATED ADDRESS REGISTER

A 16bit wide, 8 words deep address register-file (8-level stack):
The Program Counter (PC).

Program Counter

The PC register, currently pointed at, contains the address of the instruction currently being fetched. It is automatically incremented or changed by the appropriate amount each time an instruction is executed.

Instruction counter must be in the range of 0x0000h to 0x7FFFh (program memory) accept when an interrupt occur the PC will point to ISR range (0xEFFFh to 0xFFFFh).
Upon reset, the PC register is initialized to zero (0x0000h) and program execution starts at that address.

The 8 level PC stack also saves the previous PC's (return addresses) as needed (i.e. when jumping into a service routine or into interrupt mode)

Fig. 18 Program Counter stack example
13.4 R-Type instructions

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Rs2
	Rs1
	Rd
	Op Code

· R [Rd] <- R [Rs1] op R [Rs2];

· Mem[Rs1] <- R [Rd];

· R [Rd] <- Mem[Rs1 + Rs2]

· ALU operation, Register Write and Load.

· Based on decoded instruction, Read Register 1, Read Register 2, and Write the result to
Destination Register (RD).

Instruction set for R-Type format:

	C
	Z
	
	Operation
	
	Syntax

	√
	√
	
	Rd <- Rs1 + Rs2
	
	Add - add rd,rs1,rs2

	√
	√
	
	Rd <- Rs1 and Rs2
	
	And - and rd,rs1,rs2

	×
	×
	
	Rd <- Mem[Rs1]
	
	Lod - lod rd,rs1, Φ

	×
	×
	
	Rd <- Rs1
	
	Movw - mov rd,rs1,Φ

	×
	√
	
	Rd <- Rs1 or Rs2
	
	Or - or rd,rs1,rs2

	×
	×
	
	Mem[Rs1] <- Rd
	
	Str - str rd,rs1, Φ

	×
	√
	
	Rd <- Rs1 xor Rs2
	
	Xor - xor rd,rs1,rs2

√ - Affects the flag.
× - Doesn't affect the flag.

Φ - Don’t care.

13.5 I-Type instructions
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Immediate
	Rs
	Op Code

There is more than one kind of I-Type instructions.

· R [Rs (0…7)] <- Imm;

· R [Rs] <- SHIFT (Right/left) * Rs;

· If (FLAG=0) then

Pc = PC + 1(Word);

Else

Pc= [Rs+Imm];

· Extend datapath to support immediate operations.
· Read data 2 is ignored for immediate.

· Immediates are sign extended to 16bit (2's compliment).
· Sht instruction gets a 7bit immediate (2's compliment) that indicates the number of shifts.
If the immediate is POSITIVE it shifts LEFT, if the immediate is NEGITIVE it shifts RIGHT.
The barrel shifter is limited to 16 bit shift.
Instruction set for I-Type format:

	C
	Z
	
	Operation
	
	Syntax

	√
	×
	
	if(overflow=0) Pc+=1;else Pc=[Rs]
	
	Jc - jc rs

	√
	×
	
	if(overflow!=0) Pc+=1;else Pc=[Rs]
	
	Jnc

	√
	×
	
	if(overflow=0) Pc+=1;else Pc=[Rs]
	
	Jcp

	√
	×
	
	if(overflow!=0) Pc+=1;else Pc=[Rs]
	
	Jncp

	×
	√
	
	if(zero=0) Pc+=1;else Pc=[Rs]
	
	Jz - jz rs

	×
	√
	
	if(zero!=0) Pc+=1;else Pc=[Rs]
	
	Jnz

	×
	√
	
	if(zero=0) Pc+=1;else Pc=[Rs]
	
	Jzp

	×
	√
	
	if(zero!=0) Pc+=1;else Pc=[Rs]
	
	Jnzp

	×
	×
	
	Pc=[Rs]
	
	Jmp - jmp rs

	×
	×
	
	Pc=[Rs]
	
	Jmpp

	×
	×
	
	Rs[0…7] <- Imm
	
	Movb - mov rs,Imm

	√
	√
	
	Rs <- Rs + Imm
	
	Addi – addi rs,Imm

	√
	√
	
	Rs <- SHT(Rs) * Imm [shift (Imm) bits]
	
	Sht - sht rs,Imm

	√
	×
	
	Dec (Rc); if (Rc=0) Pc=Pc+1; else Pc=[Rd]
	
	Loop - loop rc,rd

	×
	×
	
	Return from interrupt
	
	Reti – reti

	×
	×
	
	Return from procedure
	
	Retp – retp

√ - Affects the flag.

× - Doesn't affect the flag.

Φ - Don’t care.
13.6 Addressing Modes
The Microcontroller supports only two addressing modes.

Register-to-Register Mode: The operand is a general-purpose register: R0 through R15.

For example: ADD R0, R1, R2
Immediate-to-Register Mode: Used only for Movb instruction. The 8bit immediate will be copied in to the lower 8 bits of the destination register.

For example: MOVB R4, #222d
14. List of Instructions

15. Memory Map
16. Functional Verification
16.1 ALU Test bench

We've tested all of the possible OpCodes in many variations such as:

	Shift
	Movb

	shift right
	'Movb' result ff80

	shift left
	'Movb' result 0000

	Add/Addi
	'Movb' result 0075

	Add' test POS+POS
	Loop

	Addi' test NEG+NEG
	'loop' branch taken - NO

	'Add' test POS+NEG
	'loop' branch taken - NO

	'Addi' test NEG+POS
	'loop' branch taken - NO

	Add' test POS+POS - Over Flow
	'loop' branch taken - NO

	'NOP' test NOP - Over Flow
	'loop' branch taken - NO

	'Addi' test NEG NEG - Over Flow
	'loop' branch taken - YES

	'Add' test POS+POS
	Regular Branch testing

	'Addi' test - false Zero
	'Jmp' branch taken - YES

	'Add' test - Zero
	'Add' test POS+POS - O.F

	Logical AND
	'Jmpz' branch taken - NO

	'And' result 0000
	'Jmpc' branch taken - YES

	'NOP' test NOP - Zero
	'Add' test Z

	And' result FFFF
	'Jmpc' branch taken - NO

	'And' result 0000
	'Jmpz' branch taken - YES

	'And' result 0F0F
	Proc Branch testing

	'And' result 0E00
	'Jmp' branch taken - YES

	Logical OR
	'Add' test POS+POS - O.F

	'Or' result FFFF
	'Jmpz' branch taken - NO

	'Or' result FFFF
	'Jmpc' branch taken - YES

	'Or' result 0000
	'Add' test Z

	'NOP' test NOP - Zero
	'Jmpc' branch taken - NO

	'NOP' test NOP - Zero
	'Jmpz' branch taken - YES

	'Or' result DDDD
	Negative Branch testing

	Logical XOR
	'Add' test POS+POS (NO Carry)

	'Xor' result FFFF
	'Jmpc' branch taken - YES

	'Xor' result 0000
	'Add' test Z

	'NOP' test NOP - Zero
	'Jmpc' branch taken - NO

	'NOP' test NOP - Zero
	'Add' test POS+POS (NO Zero)

	'Xor' result CCCC
	'Jmpz' branch taken - YES

	'Xor' result FFFF
	Negative Proc Branch testing

	'Xor' result 0000
	'Add' test POS+POS (NO Carry)

	MovW
	'Jmpc' branch taken - YES

	'Movw' result ffff
	'Add' test Z

	'Movw' result 0000
	'Jmpc' branch taken - NO

	'Movw' result 9999
	'Add' test POS+POS (NO Zero)

	
	'Jmpz' branch taken - YES

16.2 Register File Test bench

We've tested all of the possible variations of the Register File:

Fill NORMAL RegFile

Fill INTERRUPT RegFile

Read from NORMAL RegFile

Read from INTERRUPT RegFile

Read AND write in the same clock (NORMAL RegFile)

Read AND write in the same clock (INTERRUPT RegFile)

Read from NORMAL RegFile

Read from INTERRUPT RegFile
16.3 Stack Test bench

Reset test
Check the Push + POP
Check the Push + POP
Check the Push over Flow
POP all the 8 Elements from the Stack
16.4 BIU Test bench

	read 1st instruction from code memory address 0.
	EOI 3

	read 2nd instruction from code memory address 1.
	EOI 1

	read 1st(load instruction) data from memaddr=16'h8000, slow memory
	No EOI. All INT enabled.

	read 2nd data from memaddr=16'h8001, slow data memory
	interrupts 2,4,6 asserted.

	write 1st data (store instruction) to slow memory addres 16'h8AAA
	No EOI. NMI asserted. interrupts 2,4,6 de-asserted.

	DMA request system bus access.
	NMI de-asserted

	DMA has the bus.
	End-Of-INT 6

	DMA negates system bus access request and notifies the uC tha
	interrupts NMI,4 and 2 are still pending!

	read 3rd instruction from code memory address 2.
	EO NMI

	enable interrupts 1,3,5,7
	INT 1 asserted

	interrupts 2,4,6 asserted. No Pending Interrupts!
	EOI 4, INT 1 de-asserted

	interrupts 1,3,5,7 asserted. interrupts 2,4,6 de-asserted.
	EOI 2

	interrupts 1,3,5,7 are pending and de-asserted. IntTaken #7
	End-Of-INT 1

	End-Of-INT 7. IntTaken #5
	DMA request system bus access.

	No EOI
	DMA has the bus.

	End-Of-INT 5. IntTaken #3
	NMI de-asserted

	No EOI
	DMA has drropd the bus.

	
	EO NMI

16.5 Control Unit Test bench

We tested all the possible control signals that the control unit can generate:

NOP

Jc R3

Jz R3

Jmp R3

JcP R3

JzP R3

JmpP R3

Jnc R3

Jnz R3

JncP

JnzP

movb R4,8'hAA

movw R3,R4

shtL R4,1

shtR R4,1

loop R14,R5

add R2,R3,R4

lod R2<-mem[R1]

str mem[R1]<-R2

and R5,R6,R7

or R8,R9,R10

xor R11,R12,R13

addi R5,8'h55

ret proc
inttaken=1'b1
ret int
nobus=1'b1
xor R11,R12,R13

addi R5,8'h55

16.6 PC Test bench

Here we tested the regular progress of the program counter.

Then we tested regular branch commands and saw that the Fetch Address changes accordingly but the stack won't push the address to save it.
After that tested Proc branch commands and saw that the Fetch Address changes accordingly and the stack dose push the address to save it. Then we tested the RetP command.
The last thing we tested was the interrupt system.

17. Concludions and Saummary

We've invested a lot of time and effort in the Core Definition, Instruction set,

Architecture and intensive simulations, and when we've successfully compiled the fully verified behavioral code. We tested the code for synthesizability and it passed, the Altera compiler announced that our code is o.k. We downloaded (programmed the FPGA), and the FPGA Board didn't perform accordingly. We didn't have time to debug the Hardware implementation.

Our conclusion, at the end, is that the scope of work is too large for a team of 2 people. If we had a few more month, or another member in our team, then the FPGA board will have been working.

Summary: We've learned a lot about the design of a uController Device, sharpen our skills by taking major decisions, while gaining engineering practice through all workflow phases.

18. Ideas for continuation
· Prevent data hazards by employing Forwarding and or other techniques.

· Add DRAM support (DRAM Controller), to further system memory cost reduction.
· Add Cache and Write Buffer to overcome low data bandwidth/slow system memories.
· Add floating point capabilities to the ALU.

· Add Hardware Stack to save the programmers data upon jumping into a subroutine.
· Tune Core to control Robots (perform DSP computation tasks and Servo-mechanism operations).

19. Bibliographic List
· Embedded Microcontrollers & Processors Design by Charles Greg Osborn
· ARM7 TDMI User's Manual

· CRC16 User's Manual and Instruction Set

· AVR RISC Microcontroller Instruction Set
· Questions and answers about pipeline, MIT

http://6004.lcs.mit.edu/currentsemester/tutprobs/pipeline.htm
20. Appendices
[image: image14.png]

USB Cable

USB

Connector

Transceiver

Chip (PHY)

Protocol

Engine

µController

DMAC

ROM/

EEPROM

SRAM

Application

Interface

USB 2.0

SDK

DRAM

System Bus

UTMI

USB2.0

Protocol

Controller

Configuration

Registers

System Bus

UTMI

Serial

Interface Engine (SIE)

Local Bus

Interface

USB2.0

Transceiver

Endpoint�Packet

Buffers

Fig. 15 Interrupt controller state machine

 R-Type

I-Type

Example of program that has jump 4 times into a routine (the current PC could be that of an interrupt routine)

Current PC

Return PC 1

Return PC 2

Return PC 3

I�
R�
Descrition�
Command�
OpCode�
�
�
Φ�
Φ�
NO OPERATION.�
Nop�
0000�
1�
�
√�
×�
Branch if overflow flag is set.�
Jc�
0001�
2�
�
√�
×�
Branch if overflow flag is NOT set.�
Jnc�
0001�
3�
�
√�
×�
Branch into a service routin if overflow flag is set.�
JcP�
0001�
4�
�
√�
×�
Branch into a service routin if overflow flag is NOT set.�
JncP�
0001�
5�
�
√�
×�
Branch if zero flag is set.�
Jz�
0010�
6�
�
√�
×�
Branch if zero flag is NOT set.�
Jnz�
0010�
7�
�
√�
×�
Branch into a service routin if zero flag is set.�
JzP�
0010�
8�
�
√�
×�
Branch into a service routin if zero flag is NOT set.�
JnzP�
0010�
9�
�
√�
×�
Branch unconditionally.�
Jmp�
0011�
10�
�
√�
×�
Branch unconditionally into a service routin.�
JmpP�
0011�
11�
�
√�
×�
Move signed 8bit immediate to the lower 8bits of a register.�
Movb�
0100�
12�
�
×�
√�
Move the content of one register to another.�
Movw�
0101�
13�
�
√�
×�
Logical shift left \ right.�
Sht�
0110�
14�
�
√�
×�
Loop.�
loop�
0111�
15�
�
×�
√�
Add register to register.�
Add�
1000�
16�
�
×�
√�
Load a word (16bit) from memory.�
Lod�
1001�
17�
�
×�
√�
Store a word to memory.�
Str�
1010�
18�
�
×�
√�
Logical AND.�
And�
1011�
19�
�
×�
√�
Logical or.�
Or�
1100�
20�
�
×�
√�
Logical xor.�
Xor�
1101�
21�
�
√�
×�
Add 7bit (2's compliment) immediate to register�
Addi�
1110�
22�
�
√�
×�
Return from Interrupt.�
RetI�
1111�
23�
�
√�
×�
Return from procedure�
RetP�
1111�
24�
�

BIU
51
 VLSI LAB

_1351282501.vsd
7

Int

ABus

DBus

16

16

nBgnt

nBreq

nREn

nWEn

nM_Int

nOffBus

nWait

BIU

Icu

MemREn

 MemAddr – Alu1

 WData – Alu2

RMemData

nRst

Clk

RInst

InstAddr

MemWEn

Int

IntTaken

nWait

InstOrData

NoBus

nM_Int

InterruptAddr

IntTaken

EOI

NWait

16

16

_1351282503.vsd
sIR[0:15]

sMemREn
Ctrl

sImm
DeCtrl

sREnCtrl1

sRWEnCtrl

sPcCountEn
Ctrl

sStore
Mux
Ctrl

sREnCtrl2

sWB
Mux
Ctrl

sMemWEn
Ctrl

sAluOp
Ctrl

sRet
Ctrl

sImm
ExCtrl

sModeCrtl

sInstOrData
Ctrl

sRet
Ctrl

Control
Unit

Clk

nRst

RegREn
Ctrl2

RegREn
Ctrl1

RegWEn
Ctrl

Imm
ExCtrl

Store
Mux
Ctrl

AluOpCtrl

Mem
WEn
Ctrl

Mem
REn
Ctrl

WBMuxCtrl

Instruction

PcCountEn
Ctrl

Ret
Ctrl

Mode
Ctrl

IntTaken

InstOrData

NoBus

EOI
Ctrl

IREnCtrl

NWait

RegByte
WEnCtrl

_1351282504.vsd
Button

Button

16bit
MicroConroller

16bit ABus

Vcc

Vcc

Grd

16bit DBusIn

Grd

16bit DBusOut

7bit Interrupts

Vcc

Grd

Vcc

Grd

Clk

nRst

Nm_int

nIO_REn

nIO_WEn

nWait

nBreq

nOffBus

nBgnt

_1351282505.unknown

_1351282502.vsd
Program Counter

PC 8 deep 16bit wide Stack

Push

Pop

nRst

Clk

DataIn

DataOut

16bit Program Counter

nRst

Clk

pc_inc

pc_preset_ena

pc_preset

q

CountEn

Jmp
Jc, Jz
Branch
Taken

FetchAddr

PresetAddr

Ret

nRst

Clk

PresetEn

1

0

16

16

16

16

16

_1351282499.vsd
sBranch
Taken

sAluOp
Ctrl

sRegData1

sMux
Alu2

sProc

sAlu
Rslt

ALU

Clk

nRst

Alu2

Alu1

AluRslt

Branch Taken

AluOpCtrl

Proc

Adder

_1351282500.vsd
J

Q

Q

K

SET
CLR

D

L

S

R

_1351282498.vsd
�

 

RegFile

Clk

nRst

Reg
Addr1

DestReg
Addr

WBData

REn1
Ctrl

RegData2

RegData1

Reg
Addr2

Icu

Wen
Ctrl

REn2
Ctrl

Mode
Ctrl

RegByte
WEnCtrl

RegByte
WEnCtrl

sMux
Reg
Addr1

sMux
Reg
Addr2

sREnCtrl1

sRWEnCtrl

sREnCtrl2

sIcu

sRegData1

sMux
WBData

sReg
Data2

sModeCrtl

sIR[8:11]

R0

R1

R2

R3

R0

R5

R6

R7

R8

R0

R10

R11

R12

R13

R14

R15

R0

R0

R0

R0

R0

R4

R0

R0

R8

R0

R9

R0

R0

R0

R0

R14

