Department of CSE
 WT & DM Lab (R13)

INDEX

	S.No
	Date
	Name of the Experiment
	Page No.

	Sign.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

INDEX
	S.No
	Date
	Name of the Experiment
	Page No.

	Sign.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Signature
WEB PROGRAMMING LAB (13A05608)
LIST OF TASKS

1) Write a Java program which stores the user login information in database in a server, creates user interface for inserting, deleting, retrieving information from the database, accepts user login information and verifies it.

2) Write a JAVA program which establishes a connection between client and server and transfers data. Also transfer the data without establishing the connection.

3) Write a Java Program to create an Employee class with the data members Emp_id, name, Department and create a member function to get the employee information, display the details.

4) Write a java program to create a package for simple arithmetic operations

5) Write a Java Program to create a user defined Exception called- StringNotMatchException‖ when the user entered input is not equal to- INDIA
6) Write a HTML to create user registration form with following constraints; Validate the registration, user login, user profile and payment by credit card pages using Java Script.

7) Create and save an XML document at the server, which contains 10 users information. Write a program which takes User ID as input and returns the user details by taking the user information from the XML document.

8) Write a XHTML form for Employee Information like Emp_id, Name, Department Name, Phone, E-mail. using java script check the validation for each Fields(The First Character of Emp_id character followed by number, name should accept 20 characters, phone max 8 digits, email).

9) Write a Java Servlet Program to display the Current time on the server.

10) To write html and servlet to demonstrate invoking a servlet from a html.

11) Write a Java servlet program to change the Background color of the page by the color selected by the user from the list box.

12) Write a Java servlet to get the personal details about the user(Like name, Address, City, Age, Email id) and check whether the user is Eligible to vote or not.

13) Write a Java servlet Program to create a Cookie and keep it alive on the client for 30 minutes.

14) Write a java servlet program to display the various client information like Connection, Host, Accept-Encoding, User Agent.

15) To write java servlet programs to conduct online examination and to display student mark list available in a database

16) Write a Java servlet Program to implement the Book Information using JDBC.

17) Write a Java Servlet Program to create a Session and display the various information like Last accessed time, Modified time, Expiration)

18) Write a JSP Program to Display the number of visitors visited the page.

19) Write a JSP Program to implement the Book Information using Database.

20) Write a JSP Program to implement the Telephone Directory.
Additional Programs

21) a) Develop a web application in which first program is a html program that asks for user name and age, second program displays those details using request object in a browser.
b) Develop a web application in which first jsp program that takes variables in application scope, and second program that displays its value.

c) Write a web application that displays simple message Hello World using AJAX.

22) a) Develop a web application that takes user name and password in HTML file, and verify those details with defined user name and passwords in another SERVLET file. If both matches, display User is valid user. Otherwise, display user is invalid user.

b) Develop a web application that asks a number in one page and display its factorial and reverse of that number using java script.

	Week: 1
	IMPLEMENTING INSERT, DISPLAY, VERIFY OPERATIONS ON A USER
	Date:

Aim: Develop a web application that asks for user and password, which can be displayed, inserted, deleted and verified in another program.

Code:

Demo13.html:

<html>

<head><title>Welcome HTML form</title></head>

<body>

<form method="get" action="\demo\thetwo">

<h1> This welcome HTML File</h1>

user name<input type="text" name="t1"></br>

password <input type="password" name="t2"></br>

enter option(1.display 2.insert 3.delete 4. verify)<input type="text" name="t3"></br>

<input type="submit" name="submit" value="submit">

<input type="reset" name="reset" value="reset">

</form>

</body>

</html>

Week13program.java:

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week13pgm extends HttpServlet{

protected void doGet(HttpServletRequest req,HttpServletResponse resp) throws ServletException,IOException

{

resp.setContentType("text/html");

PrintWriter out=resp.getWriter();

String s1,s2,s3,s4;

s1=req.getParameter("t1");

s2=req.getParameter("t2");

s3=req.getParameter("t3");

s4=req.getParameter("submit");

if(s4!=null)

{
int f=0;

try

{
int ch=Integer.parseInt(s3);

if(ch==1)
{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

Statement st=con.createStatement();

out.println("the available data in the person database ");

ResultSet rs=st.executeQuery("select * from person");

while(rs.next())

{

out.println("<h1> user name is"+rs.getString(1)+"password is"+rs.getString(2)+"</h1>");

}

con.close();

}

else if(ch==2)

{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

String sql="insert into person values("+s1+","+s2+")";

PreparedStatement pt=con.prepareStatement(sql);

int i=pt.executeUpdate();

out.println("<h1>insertion succeeded");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from person");

while(rs.next())

{

out.println("<h1> user name is"+rs.getString(1)+"password is"+rs.getString(2)+"</h1>");

}

con.close();
}

else if(ch==3)

{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

String sql="delete * from person where pname="+s1;

PreparedStatement pt=con.prepareStatement(sql);

int i=pt.executeUpdate();

if(i!=-1)

out.println("<h1>deletion succeeded");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from person");

while(rs.next())

{
out.println("<h1> user name is"+rs.getString(1)+"password is"+rs.getString(2)+"</h1>");

}

con.close();

}

Else
{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from person");

while(rs.next())

{

if(s1.equals(rs.getString(1)) && s2.equals(rs.getString(2)))

f=1;

else

f=0;

}

if(f==1)

out.println("<h1>entered user is a valid user and is in database</h1>");

else

out.println("<h1>entered user is a not valid user and is in not database</h1>");

con.close();
}

}

catch(Exception e) { e.printStackTrace(); }

}
}
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app >

 <servlet>

 <servlet-name>week13pgm</servlet-name>

 <servlet-class>week13pgm</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>week13pgm</servlet-name>

 <url-pattern>/thetwo</url-pattern>

 </servlet-mapping>

 </web-app>

Output:
Result:

	Week: 2
	IMPLEMENTING CLIENT SERVER MODEL
	Date:

Aim: Implement client server program communication using connection establishment.

Code:

Week2server.java:

import java.io.*;

import java.net.*;

class week2server

{

public static void main(String args[])

{

try

{

ServerSocket ss=new ServerSocket(1230);

Socket s=ss.accept();

BufferedReader br=new BufferedReader(new InputStreamReader(s.getInputStream()));

String m1=br.readLine(); // read password from buffer

System.out.println("Message sent from client is:"+m1);

PrintWriter ps=new PrintWriter(new OutputStreamWriter(s.getOutputStream()),true);

ps.println("Hi client! this is wishes from server");

}

catch(Exception e) { System.out.println("error is"+e.getMessage()); }

}

} // class end

Week2client.java:

import java.io.*;

import java.net.*;

class week2client

{

public static void main(String args[]) throws Exception

{

try

{

Socket s=new Socket("localhost",1230);

PrintWriter ps=new PrintWriter(new OutputStreamWriter(s.getOutputStream()),true);

ps.println("Hi!Server");

BufferedReader br=new BufferedReader(new InputStreamReader(s.getInputStream()));

String m=br.readLine();

System.out.println("message sent from server is:"+m);

}

catch(Exception e) {

System.out.println("error is"+e.getMessage());

 }

}
}

Output:
Server with Multiple clients:

Aim: Develop a network application in which a single server interact with many clients for example consider two clients.
Code:

factserver.java:

import java.io.*;

import java.net.*;

class factserver

{

public static void main(String args[]) throws Exception

{

int i,fact=1;

ServerSocket ss=new ServerSocket(6789);

System.out.println("server is ready");

while(true)

{

Socket s=ss.accept();

System.out.println("request accepted");

new handler(s);

}

}

}

class handler implements Runnable

{

Socket s;

handler(Socket s)

{

this.s=s;

new Thread(this).start();

System.out.println("Thread Created");

}

public void run()

{

try

{

while(true)

{

BufferedReader bf=new BufferedReader(new InputStreamReader(s.getInputStream()));

PrintWriter out=new PrintWriter(s.getOutputStream(),true);

int fact=1;

int n=Integer.parseInt(bf.readLine());

System.out.println("received value"+n);

if(n==-1)

{

s.close();

break;

}

for(int i=n;i>=1;i--)

fact=fact*i;

out.println(fact);

System.out.println("sent from server is"+fact);

}
}

catch(Exception e) { }

}
}

factclient.java:

import java.io.*;

import java.net.*;

class factclient

{

public static void main(String args[]) throws Exception

{

String se, msen,fact;

Socket s=new Socket("localhost",6789);

PrintWriter out=new PrintWriter(s.getOutputStream(),true);

BufferedReader bfs=new BufferedReader(new InputStreamReader(s.getInputStream()));

BufferedReader bfu=new BufferedReader(new InputStreamReader(System.in));

while(true)

{

System.out.print("enter integer:");

String n=bfu.readLine();

out.println(n);

System.out.println("sent to server:"+n);

if(n.equals("-1"))

break;

fact=bfs.readLine();

System.out.println("received from server:"+fact);

}

s.close();

}
}

Output:

Result:

	Week: 3
	ACCESSING EMPLOYEE DATA
	Date:

Aim: Implement java program on employee class that contain emp-id, emp-name, emp-dept., and write methods to access these variable information.
Code:

import java.lang.*;

class employee

{

int emp_id;

String ename,edept;

void setdata(int x,String y,String z)

{

emp_id=x;

ename=y;

edept=z;

}

void getdata()

{

System.out.println("employee id is"+emp_id);

System.out.println("employee name is"+ename);

System.out.println("employee department is"+edept);

}

}

class demoweek3

{

public static void main(String args[])

{

employee e1=new employee();

e1.setdata(10,"john","CSE");

e1.getdata();

employee e2=new employee();

e2.setdata(20,"Smith","EEE");

e2.getdata();

employee e3=new employee();

e3.setdata(30,"Jax","ECE");

e3.getdata();

}

}

Output:

Result:
	Week: 4
	IMPLEMENTING ARITHMETIC OPERATIONS USING PACKAGES
	Date:

Aim: Develop a java program that do arithmetic operations using packages.

Procedure:

1) create a week4 directory and save arithmetic.java file in that which contain package week4; as first statement.

2) In command prompt, go to arithmetic.java directory. Compile this.

3) In command prompt, go to demo4 file which import week4.arithmetic file. Compile demo4.java.

4) run demo4.

Code:

Arithmetic.java:

package week4;

import java.lang.*;

import java.io.*;

public class arithmetic

{

public void calculate() throws IOException

{

DataInputStream dis=new DataInputStream(System.in);

float res=0;

System.out.println("enter a and b values");

float a=Float.valueOf(dis.readLine()).floatValue();

float b=Float.valueOf(dis.readLine()).floatValue();

System.out.println("enter option to do calculation 1.add 2.sub 3.mul 4.div 5.remainder");

int ch=Integer.parseInt(dis.readLine());

switch(ch)
{

case 1: res=a+b;

 break;

case 2: res=a-b;

 break;

case 3: res=a*b;

 break;

case 4: res=a/b;

 break;

case 5: res=a%b;

 break;

default: System.out.println("enter valid option in the list");
}

System.out.println("the result is"+res);

}
}

Demo4.java:

import week4.*;

class demo4

{

public static void main(String args[])

{

try

{

arithmetic a1=new arithmetic();

a1.calculate();

}

catch(Exception e) { }

}
}

Output:

Result:

	Week: 5
	IMPLEMENTING USER DEFINED EXCEPTION
	Date:

Aim: Implement a java program that display StringNotMatchException about error information if given string is not equal to INDIA.
Code:

import java.io.*;

import java.lang.*;

class MyException extends Exception

{

private String s;

MyException(String x)

{

s=x;
}

public String toString()

{

return "Given String [INDIA] is not matched";

}
}

class demo5

{

public static void main(String args[])

{

try

{

DataInputStream dis=new DataInputStream(System.in);

System.out.println("enter a string");

String str=((dis.readLine()).trim()).toString();

if(str.equals("INDIA"))

{

System.out.println("INDIA iS A GREAT COUNTRY AND IS UNIQUE IN TRADITION");

}

else

{

try

{

throw new MyException(str);

}

catch(Exception e)

{

System.out.println("exception information"+e);

}

} // else

}

catch(Exception e) { }

} //main

} //class ended

Output:

Result:

	Week: 6
	VALIDATE REGISTRATION, LOG IN AND PAYMENT BY CREDIT CARD OF AN USER
	Date:

Aim: Validate registration, log in and payment by credit card of an user.

Code:

Registration.html:

<html>

<head><title>

register</title>

<SCRIPT LANGUAGE="JAVASCRIPT">

function essentials_of_validation(form1)

{

 var return_value=true;

 var username1=form1.txtusername1.value;

 var username2=form1.txtusername2.value;

 var password1=form1.txtpassword1.value;

 var password2=form1.txtpassword2.value;

 if(username1.length < 8)

 {

 return_value=false;

 window.alert("user name less than 8 chars");

 }

if(username1==username2)

 {

 return_value=false;

 window.alert("both ids are same");

 form1.txtusername2.value="";

 }

 if(password1.length<6)

 {

 return_value=false;

 window.alert(" pwd should be > 6 char's ");

 form1.txtpassword1.value="";

 form1.txtpassword2.value="";

 }

if(password1!=password2)

{

 return_ value=false;

 window.alert("ur password mismatched ");

 form1.txtpassword1.value="";

 form1.txtpassword2.value="";

}

 return return_value;

}

</script>

</head>

<body BGCOLOR="YELLOW">

<CENTER><u>

<marquee>REGISTRATION FORM</marquee>

</u></center>

<form name="form1" onSubmit="essentials_of_validation(this)">

Name:<input name="name" type="text" size="10">

Age:<input type="text" size="3">

Sex:

<input name ="gen" type="radio" value="male">male

<input name="gen" type="radio" value="female">female

Address:<textarea name="address" rows="3" cols="3"></textarea>

Enter e-mail id u want :[*]

<input type="text" name="txtusername1" size="15">

 Password:[*]

<input type="Password" name="txtpassword1" size="15">(password should exceed 6 characters)

Confirm password:<input type="password" name="txtpassword2" size=20>

Alternate mail:[*]

<input type="text" name="txtusername2" size="15">

Known This Site Through

<input name="things" type="checkbox" value="srts"> internet

<input name="things" type="checkbox" value="sp">newspapers

<input name="things" type="checkbox" value="spor"> friends

Rate ur site

<select name="rating">

<option selected>good

<option>average

<option>bad

<option>no rating

</select>

Enter the code<input name="code" type="text" size="5">

<table border="1" width="10%" height="10%">

<thead><tr><th>

1123</th></tr>

</thead>

</table>

<input type="submit" value="submit ">

<input type ="reset" value="clear ur entries">

</form>

</body>

</html>

Login.html:

<html>

<head>

<SCRIPT LANGUAGE="JAVASCRIPT">

 function essentials_of_validation(form1)

{

 var return_value=true;

 var username=form1.txtusername.value;

 var password1=form1.txtpassword1.value;

 var password2=form1.txtpassword2.value;

 if(username.length < 8)

 {

 return_value=false;

 window.alert("user name less thn 8 chars");

 }

 if(password1.length<6)

 {

 return_value=false;

 window.alert(" pwd should be > 6 char's ");

 form1.txtpassword1.value="";

 form1.txtpassword2.value="";

 }

if(password1!=password2)

{

 return_value=false;

 window.alert("ur password mismatched ");

 form1.txtpassword1.value="";

 form1.txtpassword2.value="";

}

return return_value;

}

</script>

</head>

<body bgcolor="skyblue">

<marquee><u>login here</u></marquee>

<form name="form1" onSubmit="essentials_of_validation(this)">

Username <input type="text" name="txtusername" size=20>

Password: <input type="password" name="txtpassword1" size=20>

Confirm password:<input type="password" name="txtpassword2" size=20>

<input type="submit" value="submit">

<input type="reset" value="reset">

</form>

</body>

</html>

Payment.html:

<html>

<head><title>

payment</title>

<SCRIPT LANGUAGE="JAVASCRIPT">

function essentials_of_validation(form1)

{

 var current=new Date();

 var return_value=true;

 var username=form1.txtusername.value;

 var password1=form1.txtpassword1.value;

 var a=form1.dd.value;

 var b=form1.mm.value;

 var c=form1.yyyy.value;

if(isNaN(username))

 {

 window.alert("Not a valid account number");

 }

if(a<32 && b<13&& c>=current.getFullYear())

{

 if(c>current.getFullYear())

 {

 window.alert(" you are validated");

 }

 else if(c=current.getFullYear())

 {

 if(b>current.getMonth())

 {

 window.alert(" you are validated");

 }

 else if(b=current.getMonth())

 {

 if(a>current.getDate())

 {

 window.alert("you are validated");
 }
 }
 }

 else

 {

 window.alert("Your card has expired");
 }
 }

 else

 {

 window.alert(" card has expired");
 }
}

</script>

</head>

<body bgcolor="pink">

<marquee>Enjoy the Shopping with special

Offers</marquee>

<form name="form1" onSubmit="essentials_of_validation(this)">

Payment Through

<input name="pay" type="radio" >Credit card

<input name="pay" type="radio" >Debit card

Bank

<select name="bank">

<option selected>sbi

<option>HSBC

<option>ICICI

<option>others

</select>

Account/Card number:

<input name="txtusername" type="textbox">

Net banking id/Password<input name="txtpassword1"

type="password">

Enter date of expiry of account/card<input name="dd"

type="text" size=2>(dd)

<input name="mm" type="text" size=2>(mm)

<input name="yyyy" type="text" size=4>(yyyy)

<input type="submit" value="Accept">

<input type="reset" value="Reject">

</form>

</body>

</html>
Output:

Result:

	Week: 7
	DISPLAYING STUDENT DETAILS BY TAKING ID AS INPUT
	Date:

Aim: Develop a web application that asks for student id and displays student details in the 5 records in given xml document.
Code:

Login1.html:
<?xml version="1.0" encoding="UTF-8859-1"?>

<StudentDetails>

<Details>

<HallTicketNo>05f61a0501</HallTicketNo>

<Name>Shravya</Name>

<Education>B.Tech</Education>

<Specialization>CSE</Specialization>

<Year>IV</Year>

<Semester>I</Semester>

<Ambition>SoftwareEngineer</Ambition>

<Hobby>Reading Books</Hobby>

</Details>

<Details>

<HallTicketNo>05f61a0502</HallTicketNo>

<Name>UshaSingh</Name>

<Education>B.Tech</Education>

<Specialization>CSE</Specialization>

<Year>IV</Year>

<Semester>I</Semester>

<Ambition>SoftwareEngineer</Ambition>

<Hobby>Dance</Hobby> </Details>- <Details>

<HallTicketNo>05f61a0503</HallTicketNo> <Name>Archana</Name>

<Education>B.Tech</Education>

<Specialization>CSE</Specialization> <Year>IV</Year> <Semester>I</Semester>

<Ambition>SoftwareEngineer</Ambition>

<Hobby>Foot Boll</Hobby> </Details>- <Details>

<HallTicketNo>05f61a0504</HallTicketNo> <Name>Pavani</Name>

<Education>B.Tech</Education>

<Specialization>CSE</Specialization>

<Year>IV</Year>

<Semester>I</Semester>

<Ambition>SoftwareEngineer</Ambition>

<Hobby>Cricket</Hobby>

</Details>

<Details> <HallTicketNo>05f61a0505</HallTicketNo> <Name>VishnuVardhan</Name>

<Education>B.Tech</Education> <Specialization>CSE</Specialization> </Details>

</StudentDetails>

StudentDtails.java:

import javax.servlet.*;

import java.util.*;

import java.io.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

public class StudentDetails implements Servlet

{

private DocumentBuilderFactory fact;

private DocumentBuilder builder;

private Document doc;

private NodeList list,childs;

private Node node,parent,child;

private String str;

private String hallTicket=null;

private ServletConfig sc;

public void init(ServletConfig sc)

{
 try
 {

 this.sc=sc;

 str="Details.xml";

 fact=DocumentBuilderFactory.newInstance();

 builder =fact.newDocumentBuilder();

 doc=builder.parse(str);

 System.out.println("In the Init Method");
 }

 catch(Exception e)
 {

 System.out.println("Error in the Init Method"+e.getMessage());

 }
}

public void service(ServletRequest req, ServletResponse res)throws

ServletException,IOException,NullPointerException

{

hallTicket=req.getParameter("hall");

res.setContentType("text/html");

PrintWriter pw=res.getWriter();

list=doc.getElementsByTagName("HallTicketNo");

pw.print("<center><h1>Welcome To Student Details</center></h1>");

 for(int i=0;i<list.getLength();i++)

 {

 node=list.item(i);

 if(node.getTextContent().equals(hallTicket))

 {

 parent=node.getParentNode();

 childs=parent.getChildNodes();

 for(int j=1;j<childs.getLength()-1;j=j+2)

 {

 child=childs.item(j);

 pw.print("<center>"+child.getNodeName()+" "+child.getTextContent());

 }

 break;

 }//if

 }//for

}//service

public ServletConfig getServletConfig()

{

return sc;

}

public String getServletInfo()

{

return "Developed By Khaja HabeebUddin";

}

public void destroy()

{
}
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app>

 <servlet>

 <servlet-name>StudentDetails</servlet-name>

 <servlet-class>StudentDetails</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>StudentDetails</servlet-name>

 <url-pattern>/myservletex</url-pattern>

 </servlet-mapping>

 </web-app>

Output:

Result:

	Week: 8
	VALIDATING FIELDS USING JAVA SCRIPT
	Date:

Aim: Validate the fields such as id, name, e-mail and phone numbers using Java script.
Code:

Register.html:

<html>

<body>

<center>

<fieldset>

<legend>Registration</legend>

<form action="valid.js" method="get" onSubmit="return fun()">

<pre>

ID:<input type="text" name="id" size="10">

Name :<input type="text" name="user" size="10">

dept.name:<input type="text" name="dept" size="10">

E-mail :<input type="text" name="email" size="20">

Phone Number :<input type="text" name="ph" size="10">

<input type="submit" value="Register">

</pre>

</form>

</fieldset>

</center>

</body>
<script src="valid.js"></script></html>

valid.js:

function fun()

{

var idv=document.forms[0].id.value;

var userv=document.forms[0].user.value;

var deptv=document.forms[0].dept.value;

var emailv=document.forms[0].email.value;

var phv=document.forms[0].ph.value;

var idreg=new RegExp("^[a-zA-Z][0-9][a-zA-Z]*$");

var userreg=new RegExp("^[a-zA-Z][a-zA-Z0-9]*{20}$");

var deptreg=new RegExp("^[a-zA-Z][a-zA-Z0-9]*$");

var emailreg=new RegExp("^[a-zA-Z][a-zA-Z0-9_.]*@[a-zA-Z][a-zA-Z0-9_.]

*.[a-zA-Z][a-zA-Z0-9_.]{2}.[a-zA-Z][a-zA-Z0-9_.]{2}$|^[a-zA-Z][a-zA-Z0

-9_.]*@[a-zA-Z][a-zA-Z0-9_.]*.[a-zA-Z][a-zA-Z0-9_.]{3}$");

var phreg=new RegExp("^[0-9]{10}$");

var ruser=userreg.exec(userv);

var rdept=deptreg.exec(deptv);

var remail=emailreg.exec(emailv);

var rph=phreg.exec(phv);

if((ruser.length==20) && edept && remail && (rph.length>=8) &&))

{

alert("All values are valid");

return true;

}

else

{

if(!rid) { alert("id invalid");document.forms[0].id.focus();}

if(!ruser) { alert("username invalid");document.forms[0].user.focus();}

if(!rrdept) { alert("dept name invalid");document.forms[0].dept.focus();}

if(!remail) { alert("password invalid");document.forms[0].email.focus();}

if(!rph) { alert("phone number invalid");document.forms[0].ph.focus();}

return false;

}
}

Output:

Result:

	Week: 9
	DISPLAYING SERVER DATE USING SERVLETS
	Date:

Aim: Develop a servlet program that displays server date and time.

Code:

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week9demo extends GenericServlet

{

public void service(ServletRequest req,ServletResponse res) throws IOException, ServletException

{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

Date d=new Date();

out.println("<h1> Server Date is"+d+"</h1>");

}
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app >

 <servlet>

 <servlet-name>week9demo</servlet-name>

 <servlet-class>week9demo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>week9demo</servlet-name>

 <url-pattern>/ani</url-pattern>

 </servlet-mapping>

</web-app>

Output:

Result:

	Week: 10
	INVOKING A SERVLET
	Date:

Aim: Develop a html file that will invoke a servlet program.

Code:

Welcome1.html:

<html>

<head><title>Welcome HTML form</title></head>

<body>

<form method="get" action="\demo\invoking">

<h1> This welcome HTML File</h1>

<input type="submit" name="submit" value="submit">

</form>

</body>

</html>

Week10demo.java named as URL name invoking :

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week10demo extends GenericServlet

{

public void service(ServletRequest req,ServletResponse res) throws IOException, ServletException

{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.println("<h1> This is demonstration of SERVLET from a HTML File</h1>");

}

}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app>

 <servlet>

 <servlet-name>week10demo</servlet-name>

 <servlet-class>week10demo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>week10demo</servlet-name>

 <url-pattern>/anim</url-pattern>

 </servlet-mapping>

</web-app>

Output:

Result:

	Week: 11
	DISPLAYING BACKGROUND COLOR OF PAGE USING SERVLETS
	Date:

Aim: Develop a servlet that display the background color of the page which can be select in a list in the html document.

Code:

Week11.html:

<html>

<head><title>Selction of color in List</title></head>

<body>

<form method="post" action="\demo\eleven">

enter one color in the list <select name="colornw">

<option value="red">red</option>

<option value="green">green</option>

<option value="orange">orange</option>

<option value="cyan">cyan</option>

<option value="yellow">yellow</option>

<option value="blue">blue</option>

</select> </br>

<input type="submit" name="submit" value="submit">

</form>

</body>

</html>

Week11demo.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week11demo extends GenericServlet

{

String s1=null;

public void service(ServletRequest req,ServletResponse res) throws IOException, ServletException

{

s1=req.getParameter("colornw");

res.setContentType("text/html");

PrintWriter out=res.getWriter();

if(s1.equals("red"))
{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of red background SERVLET from a HTML File</h1></body></html>");

}
else if(s1.equals("green"))

{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of green background SERVLET from a HTML File</h1></body></html>");
}

else if(s1.equals("orange"))
{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of orange background SERVLET from a HTML File</h1></body></html>");

}

else if(s1.equals("cyan"))

{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of cyan background SERVLET from a HTML File</h1></body></html>");

}

else if(s1.equals("yellow"))

{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of yellow background SERVLET from a HTML File</h1></body></html>");

}

else

{

out.println("<html><body bgcolor="+s1+"><h1> This is demonstration of blue background SERVLET from a HTML File</h1></body></html>");

}
}
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app>

 <servlet>

 <servlet-name>week11demo</servlet-name>

 <servlet-class>week11demo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>week11demo</servlet-name>

 <url-pattern>/eleven</url-pattern>

 </servlet-mapping>

</web-app>

Output:

Result:

	Week: 12
	DISPLAYING THE DETAILS IF USER IS VALID VOTER
	Date:

Aim: Implement web application in which html file asks for user name, address, city, age and mail id, servlet program checks the age of the user. If user is right to vote, the details of the voter is to be displayed.

Code:

Week12html.html:

<html>

<head><title>Selction of color in List</title></head>

<body>

<form method="post" action="\demo\twelve">

name: <input type="text" name="t1" size=20></br>

address: <input type="text" name="t2"></br>

city: <input type="text" name="t3"></br>

age: <input type="text" name="t4"></br>

mail id: <input type="text" name="t5"></br>

<input type="submit" name="submit" value="submit">

<input type="reset" name="reset" value="clear">

</form>

</body>

</html>

Week12demo.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week12demo extends GenericServlet

{

String s1=null,s2=null,s3=null,s4=null,s5=null;

int age;

public void service(ServletRequest req,ServletResponse res) throws IOException, ServletException

{

s1=req.getParameter("t1");

s2=req.getParameter("t2");

s3=req.getParameter("t3");

s4=req.getParameter("t4");

s5=req.getParameter("t5");

res.setContentType("text/html");

PrintWriter out=res.getWriter();

age=Integer.parseInt(s4);

if(age>=18)

{

out.println("<h1>name is"+s1+"</h1>");

out.println("<h1>address is"+s2+"</h1>");

out.println("<h1>city is"+s3+"</h1>");

out.println("<h1>age is"+s4+"</h1>");

out.println("<h1>mail id is"+s5+"</h1>");

}

else

{

out.println("<h1> You are not have right to vote and u r under age 18</h1>");

 }
}
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app>

 <servlet>

 <servlet-name>week12demo</servlet-name>

 <servlet-class>week12demo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>week12demo</servlet-name>

 <url-pattern>/twelve</url-pattern>

 </servlet-mapping>
</web-app>

Output:

Result:

	Week: 13
	IMPLEMENTING COOKIES USING SERVLETS
	Date:

Aim: Develop a web application that takes values in a html and create cookies to store them and set them alive for 30minutes.

Code:

Welcome1.html:

<html>

<head><title>Welcome HTML form</title></head>

<body>

<form method="get" action="\demo\invoke">

<h1> This welcome HTML File</h1>

enter value1<input type="text" name="t1"></br>

enter value2<input type="text" name="t2"></br>

<input type="submit" name="submit" value="submit">

<input type="reset" name="reset" value="clear">

</form>

</body>

</html>

Weekdemo13.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class weekdemo13 extends HttpServlet {

String s1=null,s2=null;

 protected void doGet(HttpServletRequest req,HttpServletResponse resp) throws ServletException,IOException

{
resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

s1=req.getParameter("t1");

s2=req.getParameter("t2");

 Cookie ck1=new Cookie("nameone",s1);

Cookie ck2=new Cookie("nametwo",s2);

ck1.setMaxAge(360);

ck2.setMaxAge(360);

resp.addCookie(ck1);

 resp.addCookie(ck2);

 if(ck1.getMaxAge()==360 && ck2.getMaxAge()==360)

out.println("<h1>the created cookies are alive for 30mins</h1>");

/* Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++) */

out.println("<h1>"+ck1.getName()+": value is"+ck1.getValue()+"</h1>");

out.println("<h1>"+ck2.getName()+": value is"+ck2.getValue()+"</h1>");

 }
}

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app> <servlet>

 <servlet-name>weekdemo13</servlet-name>

 <servlet-class>weekdemo13</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>weekdemo13</servlet-name>

 <url-pattern>/invoke</url-pattern>

 </servlet-mapping>

 </web-app>

Output:

Result:

	Week: 14
	ACCESSING HEADER INFORMATION
	Date:

Aim: Develop a servlet that display various headers information such as accept-encoding, host,user agent, connection etc.

Code:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class DisplayHeader extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<center><h1>HTTP Header Request Example</h1></center>");

 out.println("<table><tr><th>Header Name</th><th>Header Information</th></tr>");

 Enumeration headerNames = request.getHeaderNames();

 while(headerNames.hasMoreElements()) {

 String paramName = (String)headerNames.nextElement();

 out.print("<tr><td>" + paramName + "</td>\n");

 String paramValue = request.getHeader(paramName);

 out.println("<td> " + paramValue + "</td></tr>\n");

 }

 out.println("</table>\n</body></html>");
 }

 // Method to handle POST method request.

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }}

Output:

Result:

	Week:15
	IMPLEMENTING ONLINE EXAM AND DISPLAY MARKS USING SERVLETS
	Date:

Aim: Develop a web application that computes students marks on obtained in an online exam and retrieve the marks from the database and display the marks.
Code:

Studentservlet.java:
import java.io.*;

import java.sql.*;

import javax.servlet.*;import javax.servlet.http.*;

public class studentservlet extends HttpServlet{

String message,Seat_no,Name,ans1,ans2,ans3,ans4,ans5;

int Total=0;

Connection connect;Statement stmt=null;

ResultSet rs=null;

public void doPost(HttpServletRequest request,HttpServletResponse

response) throws ServletException,IOException

{try

{

String url="oracle.jdbc:driver.oracledriver";

Class.forName(url);

connect=DriverManager.getConnection

("jdbc:oracle.thin:@localhost:1521:XE","system","cse");

message="Thank you for participating in online Exam";}catch

(ClassNotFoundException cnfex){cnfex.printStackTrace();}catch

(SQLException sqlex){sqlex.printStackTrace();}catch(Exception excp)

{excp.printStackTrace();}

Seat_no=request.getParameter("Seat_no");

Name=request.getParameter("Name");

ans1=request.getParameter("group1");ans2=request.getParameter

("group2");ans3=request.getParameter

("group3");ans4=request.getParameter

("group4");ans5=request.getParameter("group5");

if(ans1.equals("True"))

Total+=2;

if(ans2.equals("False"))Total+=2;

if(ans3.equals("True"))Total+=2;

if(ans4.equals("False"))

Total+=2;

if(ans5.equals("False"))

Total+=2;

try{Statement stmt=connect.createStatement();

String query="INSERT INTO student("+"seat_no,name,total"+")VALUES

('"+Seat_no+"','"+Name+"','"+Total+"')";

int result=stmt.executeUpdate(query);

stmt.close();}catch(SQLException ex){}

response.setContentType("text/html");

PrintWriter out=response.getWriter();

out.println("<html>");out.println("<head>");

out.println("</head>");out.println("<body bgcolor=cyan>");

out.println("<center>");out.println("<h1>"+message+"</h1>\n");

out.println("<h3>Yours results stored in our database</h3>");

out.print("

");

out.println(""+"Participants and their Marks"+"");

out.println("<table border=5>");

try{

Statement stmt=connect.createStatement();

String query="SELECT * FROM student";rs=stmt.executeQuery(query);

out.println("<th>"+"Seat_no"+"</th>");

out.println("<th>"+"Name"+"</th>");

out.println("<th>"+"Marks"+"</th>");while(rs.next()){out.println

("<tr>");out.print("<td>"+rs.getInt(1)+"</td>");out.print

("<td>"+rs.getString(2)+"</td>");out.print("<td>"+rs.getString

(3)+"</td>");out.println("</tr>");}out.println("</table>");}catch

(SQLException ex){ }finally{try{if(rs!=null)rs.close();if(stmt!=null)

stmt.close();if(connect!=null)connect.close();}catch(SQLException e){

}}out.println("</center>");out.println("</body></html>");

Total=0;} }

Week15.html:

<html><head><title>Database Test</title></head>

<body><center><h1>Online Examination</h1></center>

<form action="examination" method="POST">

<div align="left">
</div>

Seat Number: <input type="text" name="Seat_no">

<div align="Right">Name: <input type="text" name="Name" size="50">

</div>

1. Every host implements transport layer.

<input type="radio" name="group1" value="True">True<input type="radio" name="group1" value="False">False

2. It is a network layer's responsibility to forward packets reliably from source todestination
<input type="radio" name="group2" value="True">True<input type="radio" name="group2" value="False">False

3. Packet switching is more useful in bursty traffic
<input type="radio" name="group3" value="True">True<input type="radio" name="group3" value="False">False

4. A phone network uses packet switching
<input type="radio" name="group4" value="True">True<input type="radio" name="group4" value="False">False

5. HTML is a Protocol for describing web contents
<input type="radio" name="group5" value="True">True<input type="radio" name="group5" value="False">False

<center><input type="submit" value="Submit">

</center></form></body></html>

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app>

<servlet>

<servlet-name>studentservlet</servlet-name>

<servlet-class>studentservlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>studentservlet</servlet-name>

<url-pattern>/examination</url-pattern>

</servlet-mapping>

 </web-app>

Output:

Result:

	Week: 16
	ACCESSING BOOK DATABASE USING A SERVLET
	Date:

Aim: Develop a servlet that access book store details from the database and display them.
Code:

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class week16demo extends HttpServlet{

protected void doGet(HttpServletRequest req,HttpServletResponse resp) throws ServletException,IOException

{

resp.setContentType("text/html");

PrintWriter out=resp.getWriter();

try

{

Connection con=null;

Statement st=null;

ResultSet rs=null;

Class.forName("jdbc:oracle:driver:OracleDriver");

con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

st=con.createStatement();

String sql="select * from book";

rs=st.executeQuery(sql);

out.println("<h1>database book details</h1>");

while(rs.next())

{

out.println("<h1>"+rs.getInt(1)+"\t"+rs.getString(2)+"\t"+rs.getString(3)+"\t"+rs.getString(4)+"\t"+rs.getString(5)+"\t"+rs.getInt(5)+"</h1>");

}

rs.close();

st.close();

con.close();

}

catch(Exception e) { e.printStackTrace(); }

}

}

Output:

Result:

	Week: 17
	ACCESSING SESSION NAME, ID,CREATION,LAST ACCESSED TIME, EXPIRATION TIME ETC
	Date:

Aim: Develop a servlet that create a session and access its name, id, creation time, last accessed time, expiration time etc.
Code:

Week17.html:

<html>

<head><title>Selction of color in List</title></head>

<body>

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

</form>

</body>

</html>

FirstServlet.java:

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class FirstServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 HttpSession session=request.getSession();

 session.setAttribute("uname",n);

out.println("<h1>the session id:"+session.getId()+"</h1>
");

out.println("<h1>creation time"+session.getCreationTime()+"</h1>
");

out.println("<h1>last accessed time"+session.getLastAccessedTime()+"</h1>");

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }
}

SecondServlet.java:

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class SecondServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,IOException

{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 HttpSession session=request.getSession(false);

out.println("<h1>the session id:"+session.getId()+"</h1>
");

out.println("<h1>"+new Date(session.getCreationTime())+"</h1>
");

out.println("<h1>"+new Date(session.getLastAccessedTime())+"</h1>
");

 String n=(String)session.getAttribute("uname");

 out.print("Hello "+n);

session.setMaxInactiveInterval(5);

out.println("<h1>expiration time"+session.getMaxInactiveInterval()+"</h1>");

 out.close();

 }
 }

Web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app >

 <servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

 <servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

 <servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

 <servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

 </web-app>

Output:

Result:

	Week: 18
	COUTING THE NUMBER OF TIMES VISITOR OF A PAGE
	Date:

Aim: Write a JSP program that counts number of times a user is visited the given page.

Code:

<%@ page import="java.io.*,java.util.*" %>

<html>
<head>

<title>Applcation object in JSP</title>
</head>
<body>

<%

 Integer hitsCount =

 (Integer)application.getAttribute("hitCounter");

 if(hitsCount ==null || hitsCount == 0){

 out.println("<h1>Welcome to my website!</h1>");

 hitsCount = 1;

 }else{

 out.println("<h1>Welcome back to my website!</h1>");

 hitsCount += 1;

 }

 application.setAttribute("hitCounter", hitsCount);

%>

<center>

<p><h1>Total number of visits: <%= hitsCount%></h1></p>

</center>

</body>

</html>

Output:

Result:

	Week: 19
	IMPLEMENTING BOOK DATABASE
	Date:

Aim: Develop a JSP application that connects to book database and retrieve information.

Code:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <center>

 <h1>Book Store</h1>

 <%@ page language="java" %>

 <%@ page import="java.sql.*" %>

 <%@ page import="java.sql.DriverManager.*" %>

 <%

 Connection con= null;

 ResultSet rs= null;

 Class.forName("oracle.jdbc.driver.OracleDriver"); con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");

 Statement st=con.createStatement();

 rs=st.executeQuery("select * from book ");

 while(rs.next())

 { out.println("<h1>");

 out.println("<pre>");

 out.println("ID is =" +rs.getInt(1));

 out.println("
");

 out.println("book title=" +rs.getString(2));

out.println("
");

 out.println("book category=" +rs.getString(3));

out.println("
");

 out.println("book author=" +rs.getString(4));

out.println("
");

 out.println("book edition=" +rs.getString(5));

out.println("
");

 out.println("book price=" +rs.getInt(6));

 out.println("</pre>");

 out.println("</h1>");

}

 %>

 </center>

 </body>

</html>

Output:

Result:

	Week: 20
	IMPLEMENTING TELEPHONE DIRECTORY USING JSP
	Date:

Aim: Develop a jsp application that implements telephone directory.

Code:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
 <center>
 <h1>Telephone Directory</h1>
 <%@ page language="java" %>
 <%@ page import="java.sql.*" %>
 <%@ page import="java.sql.DriverManager.*" %>

 <%
 String m=null, mn=null;
 String s=request.getParameter("n");
 PreparedStatement ps=null;
 Connection con= null;
 ResultSet rs= null;
 Class.forName("oracle.jdbc.driver.OracleDriver");
 con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","system","cse");
 Statement st=con.createStatement();
 rs=st.executeQuery("select * from phone where name='"+ s+"' ");
 while(rs.next())
 {
 m=rs.getString(1);
 mn=rs.getString(2);
 }
 out.println("
");
 out.println("<h1>");
 out.println("<pre>");
 out.println("name =" +m);
 out.println("
");
 out.println("ph no. =" +mn);
 out.println("</pre>");
 out.println("</h1>");
 %>
 </center>
 </body>
</html>
Output:

Result:

ADDITIONAL PROGRAMS:
	Week: 21 a, b, c
	DISPLAYING NAME, AGE USING REQUEST SCOPE DISPLAYING USER NAME USING APPLICATION SCOPE DISPLAYING HELLO WORLD USING AJAX
	Date:

a) Develop a web application in which first program is a html program that asks for user name and age, second program displays those details using request object in a browser.

PROGRAM:

Demo1.html:

<html>

<body bgcolor="cyan">

<form method="get" action="jspinfo1.jsp">

enter user_name<input type="text" name="user"></br>

enter user_age<input type="text" name="age"></br>

<input type="submit" value="submit"> <input type="reset" value="clear">

</form>

</body>

</html>

Jspinfo1.jsp:

<html>

<body>

<% String s1=request.getParameter("user"); %>

<% String s2=request.getParameter("age"); %>

<% int d=Integer.parseInt(s2); %>

<% if(s1!=null)

out.println("user is"+s1+"age is"+d);

 else

out.println("user data is not provided");

%>

</body>

</html>
Output:

b) Develop a web application in which first jsp program that takes variables in application scope, and second program that displays its value.

PROGRAM:

Jspexnew2.jsp:

<html>

<body>

 <% application.setAttribute("MyName", "Chaitanya"); %>

 Click here for display

</body>

</html>

Display.jsp:

<html>

<head>

<title>Display Page</title>

</head>

<body>

 <%="This is a String" %>

 <%= application.getAttribute("MyName") %>

</body>

</html>

Output:

c) Write a web application that displays simple message Hello World using AJAX.

Code:

Helloworld.html:

<html>

<script language="javascript" src="helloworld.js" />

 <script language="javascript"> f(); </script> </html>

Helloworld.js:

<html>

<head>

<script>

function submitForm() {

var xhr;

 try {

 xhr = new ActiveXO {

try {

 xhr = new ActiveXObject('Mic

}

catch (e2) { try { xhr = new XMLHttpRequest();

catch (e3) { xhr = false; }

} }

 xhr.onreadystatechange = function() { if(xhr.readyState == 4)

 { if(xhr.status == 200)

document.ajax.dyn=" else document.ajax.dyn="Er } };

 xhr.open(GET, "data.txt", true); xhr.send(null); } </script> </head>

<body>

<FORM method="POST" <INPUT type="BUTTON" type="text" name="dyn" </FORM> </body>

</html>

Output:

Result:

	Week: 22 a, b
	RUNING SERVLET PROGRAM DISPLAYING FACTORIAL, REVERSE FOR THAT RESULT
	Date:

a) Develop a web application that takes user name and password in HTML file, and verify those details with defined user name and passwords in another SERVLET file. If both matches, display User is valid user. Otherwise, display user is invalid user.
PROGRAM

Procedure to run a servlet program:

1. Develop some html file and save in webapps.
2. Develop servlet program and save in webapps particularly myapps/WEB-INF/classes directory.
3. Create a web document web.xml and store in WEB-ING directory.
4. Start the xampp-control, xampp-start files. Open the browser, type localhost output the web page with XAMPP loading starting page.
5. Open the command prompt, go to classes directory, check path. If path setted, compile servlet program using javac.
6. In browser type the myapps and also url-pattern value in web.xml, then press enter to see the output after html file is opened and provided the data.

1. Html file:

<html>

<head>

<title>user details</title>

</head>

<body>

<form action="http://localhost:8080/myapps/authenticate" method="get">

user:<input type="text" name="t1">

password:<input type="password" name="t2">

<center><input type="submit name="submit" value="login"><input type="reset" name="reset" value="clear">

</form> </body> </html>

2. Servlet Program:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class First extends GenericServlet

{
public void service(ServletRequest req,ServletResponse res) throws ServletException,IOException

{
String s1=" ",s2=" ",s3=" ",s4=" ";

res.setContentType("text/html");

PrintWriter out=res.getWriter();

s1=req.getParameter("t1");

s2=req.getParameter("t2");

s3=req.getParameter("submit");

s4=req.getParameter("reset");

if(s4==null)

{

if(s1.equals("john") && s2.equals("1234"))

{
out.println("<h1>log in successful</h1>");
}

else

{
out.println("<h1>unsuccessful</h1>");
}

}

else

{
out.println("enter correct data into user and passwords");
}
}
}

3. Web.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app>

<servlet>

<servlet-name>abc</servlet-name>

<servlet-class>First</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>abc</servlet-name>

<url-pattern>/auth</url-pattern>

</servlet-mapping>

</web-app>

In browser, first type localhost, press enter.

Then type myapps\auth after localhost, press enter. Servlet program output is displayed in the web page.

Output:
b) Develop a web application that asks a number in one page and display its factorial, reverse of that obtained result using either java script.

PROGRAM:

<html>

<head>

<script type="text/javascript">

var x=parseInt(prompt("enter n"," "));

var f=1,k,r,s;

for(i=1;i<=x;i++)

f=f*i;

document.write("factorial of"+x+"is"+f);

document.writeln("reverse of"+f+"is"+reverse(f));

function reverse(a)

{

var s=0,r;

while(a>0)

{

r=a%10;

s=s*10+r;

a=(int)a/10;

}

return s;

}

</script>
</head>
</html>

Output:
Result:

INDEX

	S.No
	Date
	Name of the Experiment
	Page No.
	Sign.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

LIST OF EXPERIMENTS

DATA WAREHOUSING
· Build Data Warehouse and Explore WEKA
1.Build Data Warehouse/data mart

2.Explore WEKA Data Mining/Machine Learning Toolkit.

3.Perform Data Preprocessing Tasks and Demonstrate performing association rule mining on data sets.

4. Demonstrate performing Classification on data sets.

DATA MINING
 Credit Risk Assessment:
Task 1:List all the categorical (or nominal) attributes and the real-valued attributes separately.

Task 2: What attributes do you think might be crucial in making the credit assessment ? Come up with some simple rules in plain English using your selected attributes.

Task 3: One type of model that you can create is a Decision Tree - train a Decision Tree using the complete dataset as the training data. Report the model obtained after training.

Task 4: Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100 % training accuracy?

Task 5: Is testing on the training set as you did above a good idea? Why or Why not?

Task 6: One approach for solving the problem encountered in the previous question is using cross-validation? Describe what cross-validation is briefly. Train a Decision Tree again using cross-validation and report your results. Does your accuracy increase/decrease? Why?

Task 7: Check to see if the data shows a bias against "foreign workers" (attribute 20), or "personal-status"(attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka's GUI Explorer. Did removing these attributes have any significant effect? Discuss.

Task 8: Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and 21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember to reload the arff data file to get all the attributes initially before you start selecting the ones you want.)

Task 9: Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might be higher than accepting an applicant who has bad credit (case 2). Instead of counting the misclassifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)?

Task 10: Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees? How does the complexity of a Decision Tree relate to the bias of the model?

Task 11: You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning - Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain ? Also, report your accuracy using the pruned model.Does your accuracy increase?

Task 12: How can you convert a Decision Trees into "if-then-else rules". Make up your own small Decision Tree consisting of 2-3 levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules - one such classifier in Weka is rules.PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one ! Can you predict what attribute that might be in this dataset? OneR classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and oneR.

	Week: 1
	BUILD DATA WAREHOUSE/DATA MART
	Date:

ARFF File Format
An ARFF (= Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attributes.

ARFF files are not the only format one can load, but all files that can be converted with Weka’s “core converters”. The following formats are currently

supported:

· ARFF (+ compressed)
· C4.5
· CSV
· libsvm
· binary serialized instances
· XRFF (+ compressed)

10.1 Overview
ARFF files have two distinct sections. The first section is the Header information, which is followed the Data information. The Header of the ARFF file contains the name of the relation, a list of the attributes (the columns in the data), and their types.

An example header on the standard IRIS dataset looks like this:

% 1. Title: Iris Plants Database %

 % 2. Sources:

% (a) Creator: R.A. Fisher

% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

% (c) Date: July, 1988

%

@RELATION iris
@ATTRIBUTE sepallength NUMERIC @ATTRIBUTE sepalwidth NUMERIC @ATTRIBUTE petallength NUMERIC @ATTRIBUTE petalwidth NUMERIC

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica} The Data of the ARFF file looks like the following:

@DATA
5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-set os a5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments.

The @RELATION, @ATTRIBUTE and @DATA declarations are case insensitive.

The ARFF Header Section
The ARFF Header section of the file contains the relation declaration and at-tribute declarations.

The @relation Declaration
The relation name is defined as the first line in the ARFF file. The format is: @relation <relation-name>

where <relation-name> is a string. The string must be quoted if the name includes spaces.

The @attribute Declarations
Attribute declarations take the form of an ordered sequence of @attribute statements. Each attribute in the data set has its own @attribute statement which uniquely defines the name of that attribute and it’s data type. The order the attributes are declared indicates the column position in the data section of the file. For example, if an attribute is the third one declared then Weka expects that all that attributes values will be found in the third comma delimited column.

The format for the @attribute statement is: @attribute <attribute-name> <datatype>
where the <attribute-name> must start with an alphabetic character. If spaces are to be included in the name then the entire name must be quoted.

The <datatype> can be any of the four types supported by Weka:
· numeric

· integer is treated as numeric

· real is treated as numeric

· <nominal-specification>

· string

· date [<date-format>]

· relational for multi-instance data (for future use)

where <nominal-specification> and <date-format> are defined below. The keywords numeric, real, integer, string and date are case insensitive.

Numeric attributes
Numeric attributes can be real or integer numbers.

Nominal attributes
Nominal values are defined by providing an <nominal-specification> listing the possible values: <nominal-name1>, <nominal-name2>, <nominal-name3>,...

For example, the class value of the Iris dataset can be defined as follows: @ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

Values that contain spaces must be quoted.

String attributes
String attributes allow us to create attributes containing arbitrary textual values. This is very useful in text-mining applications, as we can create datasets with string attributes, then writeWeka Filters to manipulate strings (like String- ToWordVectorFilter). String attributes are declared as follows:

@ATTRIBUTE LCC string

Date attributes
Date attribute declarations take the form: @attribute <name> date [<date-format>]

where <name> is the name for the attribute and <date-format> is an optional string specifying how date values should be parsed and printed (this is the same format used by SimpleDateFormat). The default format string accepts the ISO-8601 combined date and time format: yyyy-MM-dd’T’HH:mm:ss. Dates must be specified in the data section as the corresponding string representations of the date/time (see example below).

Relational attributes
Relational attribute declarations take the form: @attribute <name> relational

<further attribute definitions> @end <name>

For the multi-instance dataset MUSK1 the definition would look like this (”...” denotes an omission): @attribute molecule_name {MUSK-jf78,...,NON-MUSK-199}

@attribute bag relational @attribute f1 numeric...

@attribute f166 numeric @end bag

@attribute class {0,1}...

The ARFF Data Section
The ARFF Data section of the file contains the data declaration line and the actual instance lines.

The @data Declaration
The @data declaration is a single line denoting the start of the data segment in the file. The format is: @data

The instance data
Each instance is represented on a single line, with carriage returns denoting the end of the instance. A percent sign (%) introduces a comment, which continues to the end of the line.

Attribute values for each instance are delimited by commas. They must appear in the order that they were declared in the header section (i.e. the data corresponding to the nth @attribute declaration is always the nth field of the attribute).

Missing values are represented by a single question mark, as in:
@data 4.4,?,1.5,?,Iris-setosa

Values of string and nominal attributes are case sensitive, and any that contain space or the comment-delimiter character % must be quoted. (The code suggests that double-quotes are acceptable and that a backslash will escape individual characters.)

An example follows: @relation LCCvsLCSH @attribute LCC string @attribute LCSH string @data

AG5, ’Encyclopedias and dictionaries.;Twentieth century.’ AS262, ’Science -- Soviet Union -- History.’

AE5, ’Encyclopedias and dictionaries.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Phases.’ AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Tables.’

Dates must be specified in the data section using the string representation specified in the attribute declaration.

For example: @RELATION Timestamps

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" @DATA

"2001-04-03 12:12:12" "2001-05-03 12:59:55"

Relational data must be enclosed within double quotes ”. For example an instance of the MUSK1 dataset (”...” denotes an omission):

MUSK-188,"42,...,30",1

	Week: 2
	EXPLORE WEKA DATA MINING/MACHINE LEARNING TOOLKIT
	Date:

INTRODUCTION ON WEKA

Weka (Waikato Environment for Knowledge Analysis) is created by researchers at the university WIKATO in NewZealand. University of Waikato, Hamilton, New Zealand Alex Seewald (original Command-line primer) David Scuse (original Experimenter tutorial)

· It is java based application.

· It is collection often source, Machine Learning Algorithm.

· The routines (functions) are implemented as classes and logically arranged in packages.

· It comes with an extensive GUI Interface.

· Weka routines can be used standalone via the command line interface.

The Graphical User Interface

The Weka GUI Chooser (class weka.gui.GUIChooser) provides a starting point for launching Weka’s main GUI applications and supporting tools. If one prefers a MDI (“multiple document interface”) appearance, then this is provided by an alternative launcher called “Main” (class weka.gui.Main). The GUI Chooser consists of four buttons—one for each of the four major Weka applications—and four menus.

[image: image11.jpg]

[image: image12.jpg]8e6ee Weka GUI Chooser

Program Visualization Tools Help
[Applications

WEKA || soiorer

‘The University
\ of Waikato | Experimenter |

Walkto ronment for Knowledse Arahsis || KnowledgeFiow |
Version 158

01569 2008
The Universiy of Waikato =
Hamilton, New Zealand SimaleC

The buttons can be used to start the following applications:

Explorer An environment for exploring data with WEKA (the rest of this documentation deals with this application in more detail).

Experimenter An environment for performing experiments and conducting
	
	statistical tests between learning schemes.

· Knowledge Flow This environment supports essentially the same functions as the Explorer but with a drag-and-drop interface. One advantage is that it supports incremental learning.

· SimpleCLI Provides a simple command-line interface that allows direct execution of WEKA commands for operating systems that do not provide their own command line interface.
I. Explorer

The Graphical user interface

1.1 Section Tabs
At the very top of the window, just below the title bar, is a row of tabs. When

the Explorer is first started only the first tab is active; the others are greyed out. This is because it is necessary to open (and potentially pre-process) a data set before starting to explore the data.

The tabs are as follows:

1. Preprocess. Choose and modify the data being acted on.

2. Classify. Train & test learning schemes that classify or perform regression

3. Cluster. Learn clusters for the data.
4. Associate. Learn association rules for the data.
5. Select attributes. Select the most relevant attributes in the data.
6. Visualize. View an interactive 2D plot of the data.
Once the tabs are active, clicking on them flicks between different screens, on which the respective actions can be performed. The bottom area of the window (including the status box, the log button, and the Weka bird) stays visible regardless of which section you are in. The Explorer can be easily extended with custom tabs. The Wiki article “Adding tabs in the Explorer” [7] explains this in detail.

II. Experimenter
2.1 Introduction
The Weka Experiment Environment enables the user to create, run, modify, and analyse experiments in a more convenient manner than is possible when processing the schemes individually. For example, the user can create an experiment that runs several schemes against a series of datasets and then analyse the results to determine if one of the schemes is (statistically) better than the other schemes.

[image: image13.png]» I[o | [Cronsssmans [“somastons][[e |

s

The Experiment Environment can be run from the command line using the Simple CLI. For example, the following commands could be typed into the CLI to run the OneR scheme on the Iris dataset using a basic train and test process. (Note that the commands would be typed on one line into the CLI.) While commands can be typed directly into the CLI, this technique is not particularly convenient and the experiments are not easy to modify. The Experimenter comes in two flavours, either with a simple interface that provides most of the functionality one needs for experiments, or with an interface with full access to the Experimenter’s capabilities. You can choose between those two with the Experiment Configuration Mode radio buttons:

· Simple

· Advanced

Both setups allow you to setup standard experiments, that are run locally on

a single machine, or remote experiments, which are distributed between several hosts. The distribution of experiments cuts down the time the experiments will take until completion, but on the other hand the setup takes more time. The next section covers the standard experiments (both, simple and advanced), followed by the remote experiments and finally the analysing of the results.

III. Knowledge Flow
3.1 Introduction
The Knowledge Flow provides an alternative to the Explorer as a graphical front end to WEKA’s core algorithms.

The KnowledgeFlow presents a data-flow inspired interface to WEKA. The user can selectWEKA components from a palette, place them on a layout canvas and connect them together in order to form a knowledge flow for processing and analyzing data. At present, all of WEKA’s classifiers, filters, clusterers, associators, loaders and savers are available in the KnowledgeFlow along withsome extra tools.

[image: image14.jpg]

[image: image15.jpg]

The Knowledge Flow can handle data either incrementally or in batches (the

Explorer handles batch data only). Of course learning from data incremen- tally requires a classifier that can be updated on an instance by instance basis. Currently in WEKA there are ten classifiers that can handle data incrementally.

The Knowledge Flow offers the following features:
· Intuitive data flow style layout

· Process data in batches or incrementally

· Process multiple batches or streams in parallel (each separate flow executes in its own thread)
· Process multiple streams sequentially via a user-specified order of execution
· Chain filters together
· View models produced by classifiers for each fold in a cross validation
· Visualize performance of incremental classifiers during processing (scrolling plots of classification accuracy, RMS error, predictions etc.)
· Plugin “perspectives” that add major new functionality (e.g. 3D data visualization, time series forecasting environment etc.)

IV. Simple CLI
The Simple CLI provides full access to all Weka classes, i.e., classifiers, filters,

clusterers, etc., but without the hassle of the CLASSPATH (it facilitates the one, with which Weka was started). It offers a simple Weka shell with separated command line and output.

[image: image16.jpg]

[image: image17.jpg]SimpleCcLl &

Welcome to the WEKA SimplecLl

ENter comnands in the Textfield at the bottom of
the window. Use the up and down arrows to move
chrough previcus commands.

Comnand completion for classnames and files is
initiated with <Tab>. In order to distinguish
between files and classnanes, file names must

be efther absolute or Start with './' or '~/'
(the Tatter is a shortcut for the home directory).
<AltsBackspace> is used Tor deleting the text

in the comnandline in chunks.

> help

Comnand nust be one o
java <classnane> <args> [> file]
break
KiTl
Capabilities <classnane> <args>
s
history
exit
help <command>

4.1 Commands
The following commands are available in the Simple CLI:

1. java <classname> [<args>]

invokes a java class with the given arguments (if any)

2. break

stops the current thread, e.g., a running classifier, in a friendly manner killstops the current thread in an unfriendly fashion

3. cls

clears the output area

4. capabilities <classname> [<args>]

lists the capabilities of the specified class, e.g., for a classifier with its option:

capabilities weka.classifiers.meta.Bagging -W weka.classifiers.trees.Id3

5. exit

exits the Simple CLI

6. help [<command>]

provides an overview of the available commands if without a command name as argument, otherwise more help on the specified command.
4.2 Invocation
In order to invoke a Weka class, one has only to prefix the class with ”java”. This command tells the Simple CLI to load a class and execute it with any given parameters. E.g., the J48 classifier can be invoked on the iris dataset with the following command:

java weka.classifiers.trees.J48 -t c:/temp/iris.arff

This results in the following output:
[image: image18.jpg]50 0 01 Iris-setosa
043 1| Iris-versicolor
0 zas | Iris-virginica

Stratified cross-validation

Correctly Classified Instances 121
ncorrectly Classified Instances 5

appa statistic 0.94
ean absolute error 0.035
00t mean squared error 0.1586
elative sbsolute error 7.8705 %
oot relative squared error 33.6353 %
fotal Mumber of Instances 150

Confusion Hatrix

ab o classified as
49 1 01 a-= Iris-setosa

047 31 b= Iris-versicolor
0 2481 c= Iris-virginica

X

3ava weka.classifiers.trees.J48 -t ./data/iris.arff]

4.3 Command redirection
Starting with this version of Weka one can perform a basic redirection:

java weka.classifiers.trees.J48 -t test.arff > j48.txt

Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection, but part of another parameter.

4.4 Command completion
Commands starting with java support completion for classnames and filenames via Tab (Alt+BackSpace deletes parts of the command again). In case that there are several matches, Weka lists all possible matches.

7. package name completion java weka.cl<Tab>

results in the following output of possible matches of package names: Possible matches:

weka.classifiers

weka.clusterers

8. classname completion

java weka.classifiers.meta.A<Tab> lists the following classes Possible matches: weka.classifiers.meta.AdaBoostM1

weka.classifiers.meta.AdditiveRegression

weka.classifiers.meta.AttributeSelectedClassifier

9. filename completion

In order for Weka to determine whether a the string under the cursor is a classname or a filename, filenames need to be absolute (Unix/Linx: /some/path/file;Windows: C:\Some\Path\file) or relative and starting with a dot (Unix/Linux: ./some/other/path/file;Windows:

.\Some\Other\Path\file).

Preprocess Tab
1. Loading Data
The first four buttons at the top of the preprocess section enable you to load data into WEKA:

1. Open file.... Brings up a dialog box allowing you to browse for the data file on the local file system.

2. Open URL.... Asks for a Uniform Resource Locator address for where the data is stored.

3. Open DB.... Reads data from a database. (Note that to make this work you might have to edit the file in weka/experiment/DatabaseUtils.props.)
4. Generate.... Enables you to generate artificial data from a variety of Data Generators. Using the Open file... button you can read files in a variety of formats: WEKA’s ARFF format, CSV format, C4.5 format, or serialized Instances format. ARFF files typically have a .arff extension, CSV files a .csv extension, C4.5 files a .data and .names extension, and serialized Instances objects a .bsi extension.
[image: image19.jpg]

[image: image20.jpg]Weka 3.5.4 - Explorer

Program Applications Tools Visualization Windows Help

[Exporer
Preprocess Rssoviate | Selectattibutes | Visualize

Openfie. OpenDB... Genera

Fiter.

Choose [None

Current relation Selected attribute

Relation: None Name: None
Instances: None Missing: None Distinct: None Unique: None
Attributes

Al

Visualize All

Welcome ta the Weka Explorer

The Current Relation: Once some data has been loaded, the Preprocess panel shows a variety of information. The Current relation box (the “current relation” is the currently loaded data, which can be interpreted as a single relational table in database terminology) has three entries:

1. Relation. The name of the relation, as given in the file it was loaded from. Filters (described below) modify the name of a relation.

2. Instances. The number of instances (data points/records) in the data.

3. Attributes. The number of attributes (features) in the data.

2.3 Working with Attributes
Below the Current relation box is a box titled Attributes. There are four

Buttons, and beneath them is a list of the attributes in the current relation.

The list has three columns:

1. No... A number that identifies the attribute in the order they are specified in the data file.

2. Selection tick boxes. These allow you select which attributes are present in the relation.

3. Name. The name of the attribute, as it was declared in the data file. When you click on different rows in the list of attributes, the fields change in the box to the right titled Selected attribute. This box displays the characteristics of the currently highlighted attribute in the list:
1. Name. The name of the attribute, the same as that given in the attribute list.

2. Type. The type of attribute, most commonly Nominal or Numeric.
3. Missing. The number (and percentage) of instances in the data for which this attribute is missing (unspecified).
4. Distinct. The number of different values that the data contains for this attribute.

5. Unique. The number (and percentage) of instances in the data having a value for this attribute that no other instances have.
Below these statistics is a list showing more information about the values stored in this attribute, which differ depending on its type. If the attribute is nominal, the list consists of each possible value for the attribute along with the number of instances that have that value. If the attribute is numeric, the list gives four statistics describing the distribution of values in the data—the minimum, maximum, mean and standard deviation. And below these statistics there is a coloured histogram, colour-coded according to the attribute chosen as the Class using the box above the histogram. (This box will bring up a drop-down list of available selections when clicked.) Note that only nominal Class attributes will result in a colour-coding. Finally, after pressing the Visualize All button, histograms for all the attributes in the data are shown in a separate window.

Returning to the attribute list, to begin with all the tick boxes are unticked.

They can be toggled on/off by clicking on them individually. The four buttons above can also be used to change the selection:

PREPROCESSING

1. All. All boxes are ticked.

2. None. All boxes are cleared (unticked).

3. Invert. Boxes that are ticked become unticked and vice versa.

4. Pattern. Enables the user to select attributes based on a Perl 5 Regular Expression. E.g., .* id selects all attributes which name ends with id.

Once the desired attributes have been selected, they can be removed by clicking the Remove button below the list of attributes. Note that this can be undone by clicking the Undo button, which is located next to the Edit button in the top-right corner of the Preprocess panel.

Working With Filters

The preprocess section allows filters to be defined that transform the data in various ways. The Filter box is used to set up the filters that are required. At the left of the Filter box is a Choose button. By clicking this button it is possible to select one of the filters in WEKA. Once a filter has been selected, its name and options are shown in the field next to the Choose button. Clicking on this box with the left mouse button brings up a GenericObjectEditor dialog box. A click with the right mouse button (or Alt+Shift+left click) brings up a menu where you can choose, either to display the properties in a GenericObjectEditor dialog box, or to copy the current setup string to the clipboard.

[image: image21.jpg]Weka 3.5.4 - Explorer

Brogram _Applications Tools Visualization Windows _Help

[Explorer

Pronracess | Classty | Cluster

Associate

Selectattibutes | Visuaiize |

opentioc ||

opentRL. || opono.

|

Filter

Fwea
¢ Citers
[#iFitter
[muttFiter
o [supervised
¢ Clunsupenised

7 Cattibute
[add
[AddCluster
[AdoEspression
[AddiD
[AdaNoise
[Addvalues
[center
[GhangeDateFormat
D clssshssiarisr
[Clustermembership
[cony
[} Discrelize
[Firstorder

| awny

Selected attribute

Name: outiook
Missing: 0 (0%)

Distinct: 3

Type: Nominal
Unique: 0 (0%)

Label

Count

sunny.

overcast

ainy.

(Class: play (Nom)

Visualize All

Fier.. || Removefiter || Close

A i

Lou | g x0

The GenericObjectEditor Dialog Box
The GenericObjectEditor dialog box lets you configure a filter. The same kind of dialog box is used to configure other objects, such as classifiers and clusterers

(see below). The fields in the window reflect the available options. Right-clicking (or Alt+Shift+Left-Click) on such a field will bring up a popup menu, listing the following options:

1. Show properties... has the same effect as left-clicking on the field, i.e., a dialog appears allowing you to alter the settings.
2. Copy configuration to clipboard copies the currently displayed configuration string to the system’s clipboard and therefore can be used anywhere else in WEKA or in the console. This is rather handy if you have to setup complicated, nested schemes.
3. Enter configuration... is the “receiving” end for configurations that got copied to the clipboard earlier on. In this dialog you can enter a class name followed by options (if the class supports these). This also allows you to transfer a filter setting from the Preprocess panel to a Filtered Classifier used in the Classify panel.
Left-Clicking on any of these gives an opportunity to alter the filters settings. For example, the setting may take a text string, in which case you type the string into the text field provided. Or it may give a drop-down box listing several states to choose from. Or it may do something else, depending on the information required. Information on the options is provided in a tool tip if you let the mouse pointer hover of the corresponding field. More information on the filter and its options can be obtained by clicking on the More button in the About panel at the top of the GenericObjectEditor window.

Some objects display a brief description of what they do in an About box, along with a More button. Clicking on the More button brings up a window describing what the different options do. Others have an additional button, Capabilities, which lists the types of attributes and classes the object can handle.

At the bottom of the GenericObjectEditor dialog are four buttons. The first two, Open... and Save... allow object configurations to be stored for future use. The Cancel button backs out without remembering any changes that have been made. Once you are happy with the object and settings you have chosen, click OK to return to the main Explorer window.

Applying Filters
Once you have selected and configured a filter, you can apply it to the data by pressing the Apply button at the right end of the Filter panel in the Preprocess panel. The Preprocess panel will then show the transformed data. The change can be undone by pressing the Undo button. You can also use the Edit...button to modify your data manually in a dataset editor. Finally, the Save... button at the top right of the Preprocess panel saves the current version of the relation in file formats that can represent the relation, allowing it to be kept for future use.

Note: Some of the filters behave differently depending on whether a class attribute has been set or not (using the box above the histogram, which will bring up a drop-down list of possible selections when clicked). In particular, the “supervised filters” require a class attribute to be set, and some of the “unsupervised attribute filters” will skip the class attribute if one is set. Note that it is also possible to set Class to None, in which case no class is set.

1. Classification Tab
Selecting a Classifier
At the top of the classify section is the Classifier box. This box has a text field

that gives the name of the currently selected classifier, and its options. Clicking on the text box with the left mouse button brings up a GenericObjectEditor dialog box, just the same as for filters, that you can use to configure the options of the current classifier. With a right click (or Alt+Shift+left click) you can once again copy the setup string to the clipboard or display the properties in a GenericObjectEditor dialog box. The Choose button allows you to choose one of the classifiers that are available in WEKA.

Test Options
The result of applying the chosen classifier will be tested according to the options that are set by clicking in the Test options box. There are four test modes:

1. Use training set. The classifier is evaluated on how well it predicts the class of the instances it was trained on.
2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to choose the file to test on.
3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds that are entered in the Folds text field.
4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of the data which is held out for testing. The amount of data held out depends on the value entered in the % field.
Note: No matter which evaluation method is used, the model that is output is Always the one build from all the training data. Further testing options can be Set by clicking on the More options... button:

[image: image22.png]Clossty | Chster _ Associoe | Seoct strbutos | visuokzo

[Ccmuss Jotn-cozsuz

Tostoptons.

—

[Epre—
O suppteatostsmt | s | |corceceiy Classacied msvances

® Crossvaldation folds 10 | agp sracissic
ey S—— e sotuse sxzox

1. Output model. The classification model on the full training set is output so that it can be viewed, visualized, etc. This option is selected by default.
2. Output per-class stats. The precision/recall and true/false statistics for each class are output. This option is also selected by default.
3. Output entropy evaluation measures. Entropy evaluation measures are included in the output. This option is not selected by default.
4. Output confusion matrix. The confusion matrix of the classifier’s predictions is included in the output. This option is selected by default.
5. Store predictions for visualization. The classifier’s predictions are remembered so that they can be visualized. This option is selected by default.
6. Output predictions. The predictions on the evaluation data are output.

Note that in the case of a cross-validation the instance numbers do not correspond to the location in the data!

7. Output additional attributes. If additional attributes need to be output alongside the predictions, e.g., an ID attribute for tracking misclassifications, then the index of this attribute can be specified here. The usual Weka ranges are supported,“first” and “last” are therefore valid indices as well (example: “first-3,6,8,12-last”).
8. Cost-sensitive evaluation. The errors is evaluated with respect to a cost matrix. The Set... button allows you to specify the cost matrix used.
9. Random seed for xval / % Split. This specifies the random seed used when randomizing the data before it is divided up for evaluation purposes.
10. Preserve order for % Split. This suppresses the randomization of the data before splitting into train and test set.
11. Output source code. If the classifier can output the built model as Java source code, you can specify the class name here. The code will be printed in the “Classifier output” area.
The Class Attribute
The classifiers in WEKA are designed to be trained to predict a single ‘class’ attribute, which is the target for prediction. Some classifiers can only learn nominal classes; others can only learn numeric classes (regression problems) still others can learn both.

By default, the class is taken to be the last attribute in the data. If you want to train a classifier to predict a different attribute, click on the box below the Test options box to bring up a drop-down list of attributes to choose from.

Training a Classifier
Once the classifier, test options and class have all been set, the learning process is started by clicking on the Start button. While the classifier is busy being trained, the little bird moves around. You can stop the training process at any time by clicking on the Stop button. When training is complete, several things happen. The Classifier output area to the right of the display is filled with text describing the results of training and testing. A new entry appears in the Result list box. We look at the result list below; but first we investigate the text that has been output.

The Classifier Output Text
The text in the Classifier output area has scroll bars allowing you to browse the results. Clicking with the left mouse button into the text area, while holding Alt and Shift, brings up a dialog that enables you to save the displayed output

in a variety of formats (currently, BMP, EPS, JPEG and PNG). Of course, you can also resize the Explorer window to get a larger display area.

The output is

Split into several sections:
1. Run information. A list of information giving the learning scheme options, relation name, instances, attributes and test mode that were involved in the process.

2. Classifier model (full training set). A textual representation of the classification model that was produced on the full training data.
3. The results of the chosen test mode are broken down thus.

4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the true class of the instances under the chosen test mode.

5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier’s prediction accuracy.

6. Confusion Matrix. Shows how many instances have been assigned to each class. Elements show the number of test examples whose actual class is the row and whose predicted class is the column.

7. Source code (optional). This section lists the Java source code if one

chose “Output source code” in the “More options” dialog.
2 Clustering Tab
Selecting a Clusterer
By now you will be familiar with the process of selecting and configuring objects. Clicking on the clustering scheme listed in the Clusterer box at the top of the window brings up a GenericObjectEditor dialog with which to choose a new clustering scheme.

[image: image23.jpg]Weka 3.5.4 - Explorer

Program Applications Tools Visualization Windows _Help

[Preprocess | Classiy Associate | Selectatrbutes | Visualize
Clusterer

Choose [EM-1100-N-1-11.08-6-5 100

Cluster mode Clusterer output

e e e Discrete Estimator. Cownts = 8 8 (Total = 1)

© Supplied test set Attribute: windy

Discrete Estimator. Cownts = 79 (Total = 16)
Clustered Instances

() Percentage split

® Classes to clusters evaluation

14 (100%)
(Nom) play.

ore clusters for visualization
Log likelihood: -3.54934

Ignore attributes

Class accribute: play
Classes to Clusters:

start

Result list right-click for options)

516114 -EM 0 <-- assigned to cluster
51 yes

51 m0

Cluster 0 <—- yes

Tncorrectly clustered instances : & 357143 %

Cluster Modes
The Cluster mode box is used to choose what to cluster and how to evaluate

the results. The first three options are the same as for classification: Use training set, Supplied test set and Percentage split (Section 5.3.1)—except that now the data is assigned to clusters instead of trying to predict a specific class. The fourth mode, Classes to clusters evaluation, compares how well the chosen clusters match up with a pre-assigned class in the data. The drop-down box below this option selects the class, just as in the Classify panel.

An additional option in the Cluster mode box, the Store clusters for visualization tick box, determines whether or not it will be possible to visualize the clusters once training is complete. When dealing with datasets that are so large that memory becomes a problem it may be helpful to disable this option.

Ignoring Attributes
Often, some attributes in the data should be ignored when clustering. The Ignore attributes button brings up a small window that allows you to select which attributes are ignored. Clicking on an attribute in the window highlights it, holding down the SHIFT key selects a range of consecutive attributes, and holding down CTRL toggles individual attributes on and off. To cancel the selection, back out with the Cancel button. To activate it, click the Select button. The next time clustering is invoked, the selected attributes are ignored.

Working with Filters
The Filtered Clusterer meta-clusterer offers the user the possibility to apply filters directly before the clusterer is learned. This approach eliminates the manual application of a filter in the Preprocess panel, since the data gets processed on the fly. Useful if one needs to try out different filter setups.

Learning Clusters
The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a result list. These all behave just like their classification counterparts. Right-clicking an entry in the result list brings up a similar menu, except that it shows only two visualization options: Visualize cluster assignments and Visualize tree. The latter is grayed out when it is not applicable.

3. Associate Tab
Setting Up
This panel contains schemes for learning association rules, and the learners are chosen and configured in the same way as the clusterers, filters, and classifiers in the other panels.

[image: image24.jpg]

[image: image25.jpg]Weka 3.5.4 - Explorer

Program Applications Tools Visualization Windows _Help

[Preprocess | Classiy Rssociate | Selectatrbutes | Visualize
Rssociator

Choose _ [Apriori -N 10-T0-C 0.8-D 0.05-U 1.0-M0.1-8-1.0-c-1

Associator output

start Stop

Resultlist right-click fc | ize of set of large itemsets
15:16:49 - Apriori
Size of set of large itemsets
Size of set of large itemsets
Size of set of large itemsets
Best rules found:
. outlosk=overcast 4 ==> play=yes 4 con: (1)
pE—— ornal 4 conf: (1]
. humidicy playsyes 4 conf: (1)
igh 3

play=no 3

. outlook=rainy windy=FALSE 3

. temperature=cool play=yes 3 cont: (1)

. outlookesunny temperature-hot 2 ==> humidity-high 2 conf: (1)
outlookssunny 2 cont: (1]

 Learning Associations
Once appropriate parameters for the association rule learner have been set, click the Start button. When complete, right-clicking on an entry in the result list allows the results to be viewed or saved.

4. Selecting Attributes Tab
Searching and Evaluating
Attribute selection involves searching through all possible combinations of attributes in the data to find which subset of attributes works best for prediction.

To do this, two objects must be set up: an attribute evaluator and a search method. The evaluator determines what method is used to assign a worth to each subset of attributes. The search method determines what style of search is performed.
[image: image26.jpg]Weka 3.5.4 - Explorer

Program Applications Tools Visualization Windows _Help

[Preprocess | Classiy Associate | Selectatrbutes | Visualize

Attribute Evaluator

Choose _[crsSubsetEval

Search Method

Choose [BestFirst-D 1-N 5

Attribute Selection Mode Attribute selection output

® Use fulltraining set
O Crossvalidation Folis
Seed

=== Attribute Selection on all input data =

Search Hethod:
Best first.

Nom) play. Start set: no attributes

Search direction: forward

start Stop Stale search after S node expansions

Total mumber of subsets evaluated: 11

Merit of best subset found: 0.247

Result list right-click for options)
[15:17:28 - Bestirst + CfsSubsetEval

Attribute Subset Evaluator (supervised, Class (nominal
CFS Subset Evaluator
Including locally predictive attributes

Selected atcributes: 1,3 ¢ 2
outlook
humidicy

Options
The Attribute Selection Mode box has two options:
1. Use full training set. The worth of the attribute subset is determined using the full set of training data.
2. Cross-validation. The worth of the attribute subset is determined by a process of cross-validation. The Fold and Seed fields set the number of folds to use and the random seed used when shuffling the data. As with Classify (Section 5.3.1), there is a drop-down box that can be used to specify which attribute to treat as the class.
5.6.3 Performing Selection
Clicking Start starts running the attribute selection process. When it is finished, the results are output into the result area, and an entry is added to the result list. Right-clicking on the result list gives several options. The first three, (View in main window, View in separate window and Save result buffer), are the same as for the classify panel. It is also possible to Visualize reduced data, or if you have used an attribute transformer such as Principal Components, Visualize transformed data. The reduced/transformed data can be saved to a file with the Save reduced data... or Save transformed data... option.

In case one wants to reduce/transform a training and a test at the same time and not use the Attribute Selected Classifier from the classifier panel, it is best to use the Attribute Selection filter (a supervised attribute filter) in batch mode (’-b’) from the command line or in the Simple CLI. The batch mode allows one to specify an additional input and output file pair (options -r and -s), that is processed with the filter setup that was determined based on the training data.

5.Visualizing Tab
WEKA’s visualization section allows you to visualize 2D plots of the current relation.

[image: image27.jpg]

[image: image28.jpg]weka 3 xplorer

Program Applications Tools Visualization Windows _Help

B Explorer e X
[Proprocess | Classity | Custer | Associate | Setectatributes | Visuaize |

Plot Matrix outiook temperature humidity windy play.
play

windy.

humidity

Plotsize: [100] Update

Pointsize: [3] -

e Select Attributes

(Colour: play (Nom) v] [susampiess: [fo0 |
Class Colour

ves 5o

Status

- Lou | g x0

The scatter plot matrix
When you select the Visualize panel, it shows a scatter plot matrix for all the attributes, colour coded according to the currently selected class. It is possible to change the size of each individual 2D plot and the point size, and to randomly jitter the data (to uncover obscured points). It also possible to change the attribute used to colour the plots, to select only a subset of attributes for inclusion in the scatter plot matrix, and to sub sample the data. Note that changes will only come into effect once the Update button has been pressed.

Selecting an individual 2D scatter plot
When you click on a cell in the scatter plot matrix, this will bring up a separate window with a visualization of the scatter plot you selected. (We described above how to visualize particular results in a separate window—for example, classifier errors—the same visualization controls are used here.)

Data points are plotted in the main area of the window. At the top are two drop-down list buttons for selecting the axes to plot. The one on the left shows which attribute is used for the x-axis; the one on the right shows which is used for the y-axis.

Beneath the x-axis selector is a drop-down list for choosing the colour scheme. This allows you to colour the points based on the attribute selected. Below the plot area, a legend describes what values the colours correspond to. If the values are discrete, you can modify the colour used for each one by clicking on them and making an appropriate selection in the window that pops up.

To the right of the plot area is a series of horizontal strips. Each strip represents an attribute, and the dots within it show the distribution of values of the attribute. These values are randomly scattered vertically to help you see concentrations of points. You can choose what axes are used in the main graph by clicking on these strips. Left-clicking an attribute strip changes the x-axis to that attribute, whereas right-clicking changes the y-axis. The ‘X’ and ‘Y’ written beside the strips shows what the current axes are (‘B’ is used for ‘both X and Y’).

Above the attribute strips is a slider labelled Jitter, which is a random displacement given to all points in the plot. Dragging it to the right increases the amount of jitter, which is useful for spotting concentrations of points. Without jitter, a million instances at the same point would look no different to just a single lonely instance.

Selecting Instances
There may be situations where it is helpful to select a subset of the data using the visualization tool. (A special case of this is the User Classifier in the Classify panel, which lets you build your own classifier by interactively selecting instances.)

Below the y-axis selector button is a drop-down list button for choosing a selection method. A group of data points can be selected in four ways:

1. Select Instance. Clicking on an individual data point brings up a window listing its attributes. If more than one point appears at the same location, more than one set of attributes is shown.
2. Rectangle. You can create a rectangle, by dragging, that selects the points inside it.

3. Polygon. You can build a free-form polygon that selects the points inside it. Left-click to add vertices to the polygon, right-click to complete it. The polygon will always be closed off by connecting the first point to the last.
4. Polyline. You can build a polyline that distinguishes the points on one side from those on the other. Left-click to add vertices to the polyline, right-click to finish. The resulting shape is open (as opposed to a polygon, which is always closed).
Once an area of the plot has been selected using Rectangle, Polygon or Polyline, it turns grey. At this point, clicking the Submit button removes all instances from the plot except those within the grey selection area. Clicking on the Clear button erases the selected area without affecting the graph.
Once any points have been removed from the graph, the Submit button changes to a Reset button. This button undoes all previous removals and returns you to the original graph with all points included. Finally, clicking the Save button allows you to save the currently visible instances to a new ARFF file.

	Week: 3
	Perform Data Preprocessing Tasks and Demonstrate performing association rule mining on data sets
	Date:

Training Data Set (Weather Table

[image: image1.png]2] Viewer

elaton: weather

outlook | temparature | humidy | windy [play
Nominal | omeric | Numeric | Noming! | Nomins!
I fumy 850 850k |0
2 Jovercast 800 900fe o
5 Jsumny 830 86.0fase Jyes
& rainy 700 86.0fase |yes
5 rany 6.0 80.0fase |yes
6 rany 650 700fme o
7 Jovercast 640 es0fske |yes
6 Jsumny 720 950fme o
o Jsumny 6.0 700Fase Jyes
10 frany 750 G0.0fase yes

[Cundo] ok

Aim:

Create a Weather Table with the help of Data Mining Tool WEKA.

Description:

We need to create a Weather table with training data set which includes attributes like outlook, temperature, humidity, windy, play.

Procedure:
Steps:

1) Open Start (Programs (Accessories (Notepad

2) Type the following training data set with the help of Notepad for Weather Table.

@relation weather

@attribute outlook {sunny,rainy,overcast}

@attribute temparature numeric

@attribute humidity numeric

@attribute windy {true,false}

@attribute play {yes,no}

@data

sunny,85.0,85.0,false,no

overcast,80.0,90.0,true,no

sunny,83.0,86.0,false,yes

rainy,70.0,86.0,false,yes

rainy,68.0,80.0,false,yes

rainy,65.0,70.0,true,no

overcast,64.0,65.0,false,yes

sunny,72.0,95.0,true,no

sunny,69.0,70.0,false,yes

rainy,75.0,80.0,false,yes

1. After that the file is saved with .arff file format.

2. Minimize the arff file and then open Start (Programs (weka-3-4.

3. Click on weka-3-4, then Weka dialog box is displayed on the screen.

4. In that dialog box there are four modes, click on explorer.

5. Explorer shows many options. In that click on ‘open file’ and select the arff file

6. Click on edit button which shows weather table on weka.

Result:

This program has been successfully executed.

To perform preprocessing task :
Aim:

Apply Pre-Processing techniques to the training data set of Weather Table

Description:

Real world databases are highly influenced to noise, missing and inconsistency due to their queue size so the data can be pre-processed to improve the quality of data and missing results and it also improves the efficiency.

There are 3 pre-processing techniques they are:

1) Add

2) Remove

3) Normalization
Creation of Weather Table:
Note : Create weather table same as above program

Add (Pre-Processing Technique:
Weather Table after adding new attribute CLIMATE:
[image: image2.png]Viewer

elaton: weather-neka.Fters, nsupervised.atriute. Adc-Ncimate-LNorinal-Clast

outlook [temparature [humdty [windy [play [climate
Nominal | tomeric | tmeric | Nomin! | Nomins | ominal

I fumy 850 850k |0

2 Jovercast 800 900fe o

5 Jsumny 830 86.0fase Jyes

& rainy 700 86.0fase |yes

5 rany 6.0 80.0fase |yes

6 rany 650 700fme o

7 Jovercast 640 es0fske |yes

6 Jsumny 720 950fme o

o Jsumny 6.0 700Fase Jyes

10 frany 750 G0.0fase yes

Procedure:
1) Start (Programs (Weka-3-4 (Weka-3-4

2) Click on explorer.
3) Click on open file.
4) Select Weather.arff file and click on open.

5) Click on Choose button and select the Filters option.

6) In Filters, we have Supervised and Unsupervised data.

7) Click on Unsupervised data.

8) Select the attribute Add.

9) A new window is opened.

10) In that we enter attribute index, type, data format, nominal label values for Climate.

11) Click on OK.

12) Press the Apply button, then a new attribute is added to the Weather Table.

13) Save the file.

14) Click on the Edit button, it shows a new Weather Table on Weka.
Weather Table after removing attributes WINDY, PLAY:
[image: image3.png]Viewer

claton: weather-neka.Fters,unsupervised.atrbute. Remove-RA-S

outlook [temparature [humidity

Nominal | omeric | Humerc
I fumy 80 850
2 Jovercast 800 0.0
5 Jsumny 830 860
& rainy 700 860
5 rany 60 800
6 rany 60 700
7 Jovercast 60 650
6 Jsumny 720 550
o Jsumny 60 700
10 frany 750 800

[Cundo] ok

Remove (Pre-Processing Technique:

Procedure:
1) Start (Programs (Weka-3-4 (Weka-3-4

2) Click on explorer.
3) Click on open file.
4) Select Weather.arff file and click on open.

5) Click on Choose button and select the Filters option.

6) In Filters, we have Supervised and Unsupervised data.

7) Click on Unsupervised data.

8) Select the attribute Remove.

9) Select the attributes windy, play to Remove.

10) Click Remove button and then Save.

11) Click on the Edit button, it shows a new Weather Table on Weka.

Weather Table after Normalizing TEMPARATURE, HUMIDITY:

[image: image4.png]Viewer

elaton: weather-nekaFiters, insupervised. attribute. Normalze

outlook | temparature [humidy [windy | play
Nominal | omeric | Numeric | Nomina! | Nomins!

I fumy 1.0[0.6666...ae |0

[Jovercast [0.7619047... [0.6333...jrue__no

5 Jsuny 05047615, 07fake yes

[+ fany 02857142, 07fake yes

5 rany |0.1904761 0sfase yes

6 fany |0.0476190...[0.1666...[ru= o

7 Jovercast 00| OOfake yes

/8 Jsunmy | 0.3809523, Tofue o

(9 sunny [0.2380952...[0.1666 .. fase_|yes

10 any | 0.52380%. Osfase yes

[ndo

Normalize (Pre-Processing Technique:

Procedure:
1) Start (Programs (Weka-3-4 (Weka-3-4

2) Click on explorer.

3) Click on open file.
4) Select Weather.arff file and click on open.

5) Click on Choose button and select the Filters option.

6) In Filters, we have Supervised and Unsupervised data.

7) Click on Unsupervised data.

8) Select the attribute Normalize.

9) Select the attributes temparature, humidity to Normalize.

10) Click on Apply button and then Save.

11) Click on the Edit button, it shows a new Weather Table with normalized values on Weka.

Result:

This program has been successfully executed.

To Demonstrate Association Rule :

Training Data Set (Buying Table

[image: image5.png]. 2ge [income | stud | credirate [buyscomp
Norinsl | Norinsl | Normins! | Nominal_ | ominal
i 20 | o far ves
P 2040 fon yes far ves
560 medum jyes far ves
20 Jon o far o
5 G0 hgn o lexcelent lyes
b 120 fon lyes far ves
72040 high lyes lexcelent jno
E (0 Jon o far ves
o120 hih lyes lexcelent lyes
10 690 |igh o far ves
11 20 fon |yes [excellnt o
12 690 |high |yes [excellent o
132040 |medum |yes Jexcellent_|yes
14 (20 [medum [yes far ves

15 690 |high |yes Jexcellnt |yes

[Cundo] ok

Aim:
Finding Association Rules for Buying data.

Description:

In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. It can be described as analyzing and presenting strong rules discovered in databases using different measures of interestingness. In market basket analysis association rules are used and they are also employed in many application areas including Web usage mining, intrusion detection and bioinformatics.

Creation of Buying Table:

Procedure:

1) Open Start (Programs (Accessories (Notepad

2) Type the following training data set with the help of Notepad for Buying Table.

@relation buying

@attribute age {L20,20-40,G40}

@attribute income {high,medium,low}

@attribute stud {yes,no}

@attribute creditrate {fair,excellent}

@attribute buyscomp {yes,no}

@data

L20,high,no,fair,yes

20-40,low,yes,fair,yes

G40,medium,yes,fair,yes

L20,low,no,fair,no

G40,high,no,excellent,yes

L20,low,yes,fair,yes

20-40,high,yes,excellent,no

G40,low,no,fair,yes

L20,high,yes,excellent,yes

G40,high,no,fair,yes

L20,low,yes,excellent,no

G40,high,yes,excellent,no

20-40,medium,yes,excellent,yes

L20,medium,yes,fair,yes

G40,high,yes,excellent,yes

3) After that the file is saved with .arff file format.

4) Minimize the arff file and then open Start (Programs (weka-3-4.

5) Click on weka-3-4, then Weka dialog box is displayed on the screen.

6) In that dialog box there are four modes, click on explorer.

7) Explorer shows many options. In that click on ‘open file’ and select the arff file

8) Click on edit button which shows buying table on weka.

Output:

[image: image6.png]Prproces | lsay | Chstr] Assouse | sttt Vi

Associator

[GroseJapron 41070090005 010151 5-10

() [| |ttt

Apriori

Resuk It (rght-cick or ¢

Minimum support: 0.2 (3 instances)
Minimm mecric <confidence>: 0.9
Number of cycles performed: 16

Generated sets of large itemsets:

Size of set of large itemsets L(1): 12

Size of set of large itemsets L(2): 28

Size of set of large itemsets L(3): 15

Best rules found:

1 buyscomp=yes 4 conf: (1)
2. > creditratesexcellent 4 conf:
E s buyscon creditratesexcellent 3 conf:
4. creditratesexcellent buyscomp=no 3 ==> stud=yes 3 conf:
5. income=low buyscomp=yes 3 ==> creditratesfair 3

e studeyes buyscomp=yes 3 cont:

7 > buyscony cont

8. incomemediun buyscomp=yes 3 cont

©. income-high stud=no 3 =-> buyscompyes 3 conf: (1)

10. age=640 creditrate=fair 3 ==> buyscomp cont: (1)

Status

Procedure for Association Rules:

1) Open Start (Programs (Weka-3-4 (Weka-3-4

2) Open explorer.

3) Click on open file and select buying.arff
4) Select Associate option on the top of the Menu bar.

5) Select Choose button and then click on Apriori Algorithm.

6) Click on Start button and output will be displayed on the right side of the window.

Result:
This program has been successfully executed.

	Week: 4
	DEMONSTRATE PERFORMING CLASSIFICATION ON DATA SETS
	Date:

Training Data Set (Customer Table

[image: image7.png]B

Eiiiiiiiiiﬁ

[] (k) (wcnects]

Aim:

To Construct Decision Tree for Customer data and classify it.

Description:

Classification & Prediction:

Classification is the process for finding a model that describes the data values and concepts for the purpose of Prediction.

Decision Tree:

A decision Tree is a classification scheme to generate a tree consisting of root node, internal nodes and external nodes.

Root nodes representing the attributes. Internal nodes are also the attributes. External nodes are the classes and each branch represents the values of the attributes

Decision Tree also contains set of rules for a given data set; there are two subsets in Decision Tree. One is a Training data set and second one is a Testing data set. Training data set is previously classified data. Testing data set is newly generated data.

Creation of Customer Table:

Procedure:

1) Open Start (Programs (Accessories (Notepad

2) Type the following training data set with the help of Notepad for Customer Table.

@relation customer

@attribute name {x,y,z,u,v,l,w,q,r,n}

@attribute age {youth,middle,senior}

@attribute income {high,medium,low}

@attribute class {A,B}

@data

x,youth,high,A

y,youth,low,B

z,middle,high,A

u,middle,low,B

v,senior,high,A

l,senior,low,B

w,youth,high,A

q,youth,low,B

r,middle,high,A

n,senior,high,A

1) After that the file is saved with .arff file format.

2) Minimize the arff file and then open Start (Programs (weka-3-4.

3) Click on weka-3-4, then Weka dialog box is displayed on the screen.

4) In that dialog box there are four modes, click on explorer.

5) Explorer shows many options. In that click on ‘open file’ and select the arff file

6) Click on edit button which shows customer table on weka.

Procedure for Decision Trees:

1) Open Start (Programs (Weka-3-4 (Weka-3-4

2) Open explorer.

3) Click on open file and select customer.arff
4) Select Classifier option on the top of the Menu bar.

5) Select Choose button and click on Tree option.

6) Click on J48.
7) Click on Start button and output will be displayed on the right side of the window.

8) Select the result list and right click on result list and select Visualize Tree option.

9) Then Decision Tree will be displayed on new window.

Output:

[image: image8.png]%] Weka Explorer

Preocess] sy | Cuter | Assocate | Selet it Viuaie]

Clssfer

(o com iz

o
L] 0.111 L] L] L] u T
]| o 0222 o o o v
o o o o o a
oS e Confusion Matrix
[Csmt J[5% || abcaergnis < classieieans
el 122501000 1
=
- P

[image: image29.png]5] Weka Classifie Tree.

Tree View

*

=youth ™ = middle

= senior

T—

Decision Tree:

Result:
This program has been successfully executed.

DATA MINING
CREDIT RISK ASSESSMENT:

Description: The business of banks is making loans. Assessing the credit worthiness of an applicant’s of crucial importance. We have to develop a system to help a loan officer decide whether the credit of a customer is good or bad. A bank’s business rules regarding loans must consider two opposing factors. On the one hand, a bank wants to make as many loans as possible. Interest on these loans is the banks profit source. On the other hand, a bank cannot afford to make too many bad loans. To many bad loans could leads to the collapse of the bank. The bank’s loan policy must involve a compromise not too strict, and not too lenient.

Procedure:

Actual historical credit data is not always easy to come by because of confidentiality rules. Here is one such dataset, consisting of 1000 actual cases collected in Germany. In spite of the fact that the data is German, you should probably make use of it for this assignment.

A few notes on the German dataset:

DM stands for Deutsche Mark, the unit of currency, worth about 90 cents Canadian. Owns_telephone: German phone rates are much higher that in Canada. So fewer people own telephone. Foreign_worker: There are million of these in Germany (many from Turkey).It is very hard to get German citizenship if you were not born of Germany parents.There are 20 attributes used in judging a loan applicant. The goal is the classify the applicant into own of two categories. Good or bad.The German credit data set consisting of 21 attributes and 1000 instances collected in Germany and are stored in the file credit-g.arff .

Attributes and its description

Attribute 1: (qualitative) Status of existing checking account

A11 : ... < 0 DM A12 : 0 <= ... < 200 DM

A13 : ... >= 200 DM / salary assignments for at least 1 year

A14 : no checking account

Attribute 2: (numerical) Duration in month

Attribute 3: (qualitative) Credit history

A30 : no credits taken/ all credits paid back duly

A31 : all credits at this bank paid back duly

A32 : existing credits paid back duly till now A33 : delay in paying off in the past

A34 : critical account/ other credits existing (not at this bank)

Attribute 4: (qualitative) Purpose

A40 : car (new)

A41 : car (used)

A42 : furniture/equipment

A43 : radio/television

A44 : domestic appliances

A45 : repairs

A46 : education

A47 : (vacation - does not exist?)

A48 : retraining A49 : business A410 : others

Attribute 5: (numerical) Credit amount

Attribute 6: (qualitative) Savings account/bonds

A61 : ... < 100 DM

A62 : 100 <= ... < 500 DM

A63 : 500 <= ... < 1000 DM

A64 : .. >= 1000 DM

A65 : unknown/ no savings account

Attribute 7: (qualitative) Present employment since

A71 : unemployed

A72 : ... < 1 year

A73 : 1 <= ... < 4 years

A74 : 4 <= ... < 7 years

A75 : .. >= 7 years

Attribute 8: (numerical) Installment rate in percentage of disposable income

Attribute 9: (qualitative) Personal status and sex

A91 : male : divorced/separated

A92 : female : divorced/separated/married

A93 : male : single

A94 : male : married/widowed

A95 : female : single

Attribute 10: (qualitative) Other debtors / guarantors

A101 : none

A102 : co-applicant

A103 : guarantor

Attribute 11: (numerical) Present residence since

Attribute 12: (qualitative) Property

A121 : real estate

A122 : if not

A121 : building society savings agreement/ life insurance

A123 : if not

A121/A122 : car or other, not in attribute 6

A124 : unknown / no property

Attribute 13: (numerical) Age in years

Attribute 14: (qualitative) Other installment plans

A141 : bank

A142 : stores

A143 : none

Attribute 15: (qualitative) Housing

A151 : rent

A152 : own

A153 : for free

Attribute 16: (numerical) Number of existing credits at this bank

Attribute 17: (qualitative) Job

A171 : unemployed/ unskilled - non-resident

A172 : unskilled – resident

A173 : skilled employee / official

A174 : management/ self-employed/ highly qualified employee

Attribute 18: (numerical) Number of people being liable to provide maintenance for

Attribute 19: (qualitative) Telephone

A191 : none

A192 : yes, registered under the customers name

Attribute 20: (qualitative) foreign worker

A201 yes A202 : no

Attribute21:class(good/bad)
	Week: 1
	LIST OUT THE CATAGORIAL AND REAL VALUE ATTRIBUTES
	Date:

AIM: List all the categorical (or nominal) attributes and the real-valued attributes seperately.

Procedure:

Attributes:-
1. checking_status

2. duration
3. credit history

4. purpose

5. credit amount

6. savings_status

7. employment duration

8. installment rate

9. personal status

10. debitors

11. residence_since
12. property

14. installment plans

15. housing

16. existing credits

17. job

18. num_dependents

19. telephone

20. foreign worker

Categorical or Nomianal attributes:
1. checking_status

2. credit history
3. purpose

4. savings_status

5. employment

6. personal status

7. debtors

8. property

9. installment plans

10. housing

11. job

12. telephone
13. foreign worker

Real valued attributes:
1. duration

2. credit amount

3. credit amount

4. residence

5. age

6. existing credits
7. num_dependents

	Week: 2
	IDENTIFING THE CRUCIAL ATTIBUTES IN CRIDET ASSESMENT
	Date:

AIM: Write a procedure in WEKA for What attributes do you think might be crucial in making the credit assessement ? Come up with some simple rules in plain English using your selected attributes.

Procedure:

1. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

2. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window and normalize the attributes in that file

3. To normalize the attributes select choose→filters→unsupervised→instance→normalize option and click on the apply button

4. To select the crucial attributes click on the select attributes tab and then select Best First Algorithm shows then click on the start button then the algorithm shows the crucial attributes in the window

5. Select the preprocess tab then unselect remaining attributes they are not selected attributes then press the remove button then normalize crucial attributes

6. To present the rules in the form of tree select classify→choose→classifier→trees→j48 then click on the start button, then j48 algorithm is displayed in the window then right click on the trees.j48 and select visualize tree option then the tree format of the rules displayed as shown below

7. To present simple rules in plain English using your selected attributes perform the following steps

Select classify→rules→part then click on the start button then it will shows the rules

 Expected Output:

According to the following attributes may be crucial in making the credit risk assessment.

1. Credit_history

2. checking_status
3. foreign_worker
4. savings_status

5. num_dependents
6. credit_amount

7. installment_commitment

Basing on the above attributes, we can make a decision whether to give credit or not.

Plain English Rules:

1 checking_status = no checking AND other_payment_plans = none AND credit_history = critical/other existing credit: good

2 checking_status = no checking AND existing_credits <= 1 AND other_payment_plans = none AND purpose = radio/tv: good

3 checking_status = no checking AND foreign_worker = yes AND employment = 4<=X<7: good

4 foreign_worker = no AND personal_status = male single: good

5 checking_status = no checking AND purpose = used car AND other_payment_plans = none: good

6 duration <= 15 AND other_parties = guarantor: good

7 duration <= 11 AND credit_history = critical/other existing credit: good

8 checking_status = >=200 AND num_dependents <= 1 AND property_magnitude = car: good

9 checking_status = no checking AND property_magnitude = real estate AND other_payment_plans = none AND age > 23: good

10 avings_status = >=1000 AND property_magnitude = real estate: good

11 savings_status = 500<=X<1000 AND employment = >=7: good

12 credit_history = no credits/all paid AND housing = rent: bad

13 savings_status =no known savings AND checking_status = 0<=X<200 AND

 existing_credits > 1: good

14 checking_status = >=200 AND num_dependents <= 1 AND

 property_magnitude = life insurance: good

15 installment_commitment <= 2 AND other_parties = co applicant AND existing_credits > 1: bad

16 installment_commitment <= 2 AND credit_history = delayed previously AND

existing_credits > 1 AND residence_since > 1: good

17 installment_commitment <= 2 AND credit_history = delayed previously AND

existing_credits <= 1: good

18 duration > 30 AND savings_status = 100<=X<500: bad

19 credit_history = all paid AND other_parties = none AND other_payment_plans = bank: bad

20 duration > 30 AND savings_status = no known savings AND num_dependents > 1: good

21 duration > 30 AND credit_history = delayed previously: bad

22 duration > 42 AND savings_status = <100 AND residence_since > 1: bad

Generated Output:

	Week: 3
	TRAIN DECISION TREE USING WEKA EXPLORER
	Date:

AIM: Write a procedure in WEKA for One type of model that you can create is a Decision Tree - train a Decision Tree using the complete dataset as the training data. Report the model obtained after training.
1. Procedure:

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select →choose→classifier→trees→j48 then click on the start button, then j48 algorithm is displayed in the window then right click on the trees.j48
5. In Test options select use training set and then click on the start button
6. Right side analysis report is displayed
7. Based on the result report the model
8. Go to Result list window and select trees.j48 and the right click select visualize tree
9. Draw the resulting tree

10. Report the model different tree models
Expected Output:

J48 pruned tree

checking_status = <0

| foreign_worker = yes

| | duration <= 11

| | | existing_credits <= 1

| | | | property_magnitude = real estate: good (8.0/1.0)

| | | | property_magnitude = life insurance

| | | | | own_telephone = none: bad (2.0)

| | | | | own_telephone = yes: good (4.0)
| | | | property_magnitude = car: good (2.0/1.0)

| | | | property_magnitude = no known property: bad (3.0)

| | | existing_credits > 1: good (14.0)

| | duration > 11

| | | job = unemp/unskilled non res: bad (5.0/1.0)

| | | job = unskilled resident

| | | | purpose = new car

| | | | | own_telephone = none: bad (10.0/2.0)

| | | | | own_telephone = yes: good (2.0)
| | | | purpose = used car: bad (1.0)

| | | | purpose = furniture/equipment

| | | | | employment = unemployed: good (0.0)

| | | | | employment = <1: bad (3.0)

| | | | | employment = 1<=X<4: good (4.0)

| | | | | employment = 4<=X<7: good (1.0)

| | | | | employment = >=7: good (2.0)

| | | | purpose = radio/tv
| | | | | existing_credits <= 1: bad (10.0/3.0)

| | | | | existing_credits > 1: good (2.0)

| | | | purpose = domestic appliance: bad (1.0)

| | | | purpose = repairs: bad (1.0)

| | | | purpose = education: bad (1.0)

| | | | purpose = vacation: bad (0.0)

| | | | purpose = retraining: good (1.0)

| | | | purpose = business: good (3.0)

| | | | purpose = other: good (1.0)

| | | job = skilled
| | | | other_parties = none

| | | | | duration <= 30

| | | | | | savings_status = <100

| | | | | | | credit_history = no credits/all paid: bad (8.0/1.0)

| | | | | | | credit_history = all paid: bad (6.0)

| | | | | | | credit_history = existing paid

| | | | | | | | own_telephone = none

| | | | | | | | | existing_credits <= 1

| | | | | | | | | | property_magnitude = real estate

| | | | | | | | | | | age <= 26: bad (5.0)
| | | | | | | | | | | age > 26: good (2.0)

| | | | | | | | | | property_magnitude = life insurance: bad (7.0/2.0)

| | | | | | | | | | property_magnitude = car

| | | | | | | | | | | credit_amount <= 1386: bad (3.0)

| | | | | | | | | | | credit_amount > 1386: good (11.0/1.0)

| | | | | | | | | | property_magnitude = no known property: good (2.0)

| | | | | | | | | existing_credits > 1: bad (3.0)

| | | | | | | | own_telephone = yes: bad (5.0)

| | | | | | | credit_history = delayed previously: bad (4.0)

| | | | | | | credit_history = critical/other existing credit: good (14.0/4.0)
| | | | | | savings_status = 100<=X<500

| | | | | | | credit_history = no credits/all paid: good (0.0)

| | | | | | | credit_history = all paid: good (1.0)

| | | | | | | credit_history = existing paid: bad (3.0)

| | | | | | | credit_history = delayed previously: good (0.0)

| | | | | | | credit_history = critical/other existing credit: good (2.0)

| | | | | | savings_status = 500<=X<1000: good (4.0/1.0)

| | | | | | savings_status = >=1000: good (4.0)

| | | | | | savings_status = no known savings

| | | | | | | existing_credits <= 1
| | | | | | | | own_telephone = none: bad (9.0/1.0)

| | | | | | | | own_telephone = yes: good (4.0/1.0)

| | | | | | | existing_credits > 1: good (2.0)

| | | | | duration > 30: bad (30.0/3.0)

| | | | other_parties = co applicant: bad (7.0/1.0)

| | | | other_parties = guarantor: good (12.0/3.0)

| | | job = high qualif/self emp/mgmt: good (30.0/8.0)
| foreign_worker = no: good (15.0/2.0)
checking_status = 0<=X<200

| credit_amount <= 9857

| | savings_status = <100

| | | other_parties = none

| | | | duration <= 42

| | | | | personal_status = male div/sep: bad (8.0/2.0)

| | | | | personal_status = female div/dep/mar

| | | | | | purpose = new car: bad (5.0/1.0)

| | | | | | purpose = used car: bad (1.0)

| | | | | | purpose = furniture/equipment
| | | | | | | duration <= 10: bad (3.0)

| | | | | | | duration > 10

| | | | | | | | duration <= 21: good (6.0/1.0)

| | | | | | | | duration > 21: bad (2.0)

| | | | | | purpose = radio/tv: good (8.0/2.0)

| | | | | | purpose = domestic appliance: good (0.0)

| | | | | | purpose = repairs: good (1.0)

| | | | | | purpose = education: good (4.0/2.0)

| | | | | | purpose = vacation: good (0.0)

| | | | | | purpose = retraining: good (0.0)
| | | | | | purpose = business

| | | | | | | residence_since <= 2: good (3.0)

| | | | | | | residence_since > 2: bad (2.0)

| | | | | | purpose = other: good (0.0)

| | | | | personal_status = male single: good (52.0/15.0)

| | | | | personal_status = male mar/wid

| | | | | | duration <= 10: good (6.0)

| | | | | | duration > 10: bad (10.0/3.0)

| | | | | personal_status = female single: good (0.0)

| | | | duration > 42: bad (7.0)
| | | other_parties = co applicant: good (2.0)

| | | other_parties = guarantor

| | | | purpose = new car: bad (2.0)

| | | | purpose = used car: good (0.0)

| | | | purpose = furniture/equipment: good (0.0)

| | | | purpose = radio/tv: good (18.0/1.0)

| | | | purpose = domestic appliance: good (0.0)

| | | | purpose = repairs: good (0.0)

| | | | purpose = education: good (0.0)

| | | | purpose = vacation: good (0.0)
| | | | purpose = retraining: good (0.0)

| | | | purpose = business: good (0.0)

| | | | purpose = other: good (0.0)

| | savings_status = 100<=X<500

| | | purpose = new car: bad (15.0/5.0)

| | | purpose = used car: good (3.0)

| | | purpose = furniture/equipment: bad (4.0/1.0)

| | | purpose = radio/tv: bad (8.0/2.0)
| | | purpose = domestic appliance: good (0.0)

| | | purpose = repairs: good (2.0)

| | | purpose = education: good (0.0)

| | | purpose = vacation: good (0.0)

| | | purpose = retraining: good (0.0)

| | | purpose = business

| | | | housing = rent

| | | | | existing_credits <= 1: good (2.0)

| | | | | existing_credits > 1: bad (2.0)

| | | | housing = own: good (6.0)
| | | | housing = for free: bad (1.0)

| | | purpose = other: good (1.0)

| | savings_status = 500<=X<1000: good (11.0/3.0)

| | savings_status = >=1000: good (13.0/3.0)

| | savings_status = no known savings: good (41.0/5.0)

| credit_amount > 9857: bad (20.0/3.0) checking_status = >=200: good (63.0/14.0) checking_status = no checking: good (394.0/46.0)

Number of Leaves : 103

Size of the tree : 140

	Time taken to build model: 0.03 seconds

=== Evaluation on training set ===
	

	=== Summary ===
	

	Correctly Classified Instances
	855
	85.5
	%

	Incorrectly Classified Instances
	145
	14.5
	%

	Kappa statistic
	0.6251
	
	

	Mean absolute error
	0.2312
	
	

	Root mean squared error
	0.34
	
	

	Relative absolute error
	55.0377 %
	
	

	Root relative squared error
	74.2015 %
	
	

	Total Number of Instances
	1000
	
	

Generated Output:

	Week: 4
	CLASSIFY THE MODEL GOOD OR BAD FOR COMPLETE DATASET
	Date:

AIM: Write a procedure in WEKA for Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100 % training accuracy?

Procedure:

In the above model, we trained complete dataset and we classified credit good/bad for each of the examples in the dataset.

For example:

IF purpose=vacation THEN
credit=bad

ELSE

purpose=business THEN Credit=good
In this way, we classified each of the examples in the dataset.

We classified 85.5% of examples correctly and the remaining 14.5% of examples are incorrectly classified. We can’t get 100% training accuracy because out of the 20 attributes, we have some unnecessary attributes which are also been analyzed and trained.

 Due to this, the accuracy is affected and hence we can’t get 100% training accuracy.

	Week: 5
	TESTING THE TRAINING SET
	Date:

AIM: Is testing on the training set as you did above a good idea? Why or Why not?
Procedure:

According to the rules, for the maximum accuracy, we have to take 2/3 of the dataset as training set and the remaining 1/3 as test set. But here in the above model, we have taken complete dataset as training set which results only 85.5% accuracy.

This is done for the analyzing and training of the unnecessary attributes which does not make a crucial role in credit risk assessment. And by this complexity is increasing and finally it leads to the minimum accuracy.

If some part of the dataset is used as a training set and the remaining as test set then it leads to the accurate results and the time for computation will be less.

This is why, we prefer not to take complete dataset as training set.

	Week: 6
	TRAIN DECISION USING CROSS VALIDATION
	Date:

AIM: Write a procedure in WEKA for One approach for solving the problem encountered in the previous question is using cross-validation? Describe what cross-validation is briefly. Train a Decision Tree again using cross-validation and report your results. Does your accuracy increase/decrease? Why?

Procedure:

Cross validation:-
1. In k-fold cross-validation, the initial data are randomly portioned into ‘k’ mutually exclusive subsets or folds D1, D2, D3,, Dk. Each of approximately equal size. Training and testing is performed ‘k’ times. In iteration I, partition Di is reserved as the test set and the remaining partitions are collectively used to train the model. That is in the first iteration subsets D2, D3,, Dk collectively serve as the training set in order to obtain as first model. Which is tested on Di. The second trained on the subsets D1, D3,, Dk and test on the D2 and so on….

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select →choose→classifier→trees→j48 then click on the start button, then j48 algorithm is displayed in the window then right click on the trees.j48
5. In Test options select cross validation and then click on the start button
6. Right side analysis report is displayed
7. Based on the result report the model
8. Go to Result list window and select trees.j48 and the right click select visualize tree
9. Draw the resulting tree

9. Report the model different tree models
Expected Output:

J48 pruned tree :-

checking_status = <0

| foreign_worker = yes

| | duration <= 11

| | | existing_credits <= 1

| | | | property_magnitude = real estate: good (8.0/1.0)

| | | | property_magnitude = life insurance

| | | | | own_telephone = none: bad (2.0)

| | | | | own_telephone = yes: good (4.0)

| | | | property_magnitude = car: good (2.0/1.0)

| | | | property_magnitude = no known property: bad (3.0)
| | | existing_credits > 1: good (14.0)

| | duration > 11

| | | job = unemp/unskilled non res: bad (5.0/1.0)

| | | job = unskilled resident

| | | | purpose = new car

| | | | | own_telephone = none: bad (10.0/2.0)

| | | | | own_telephone = yes: good (2.0)

| | | | purpose = used car: bad (1.0)

| | | | purpose = furniture/equipment
| | | | | employment = unemployed: good (0.0)

| | | | | employment = <1: bad (3.0)

| | | | | employment = 1<=X<4: good (4.0)

| | | | | employment = 4<=X<7: good (1.0)

| | | | | employment = >=7: good (2.0)

| | | | purpose = radio/tv

| | | | | existing_credits <= 1: bad (10.0/3.0)

| | | | | existing_credits > 1: good (2.0)

| | | | purpose = domestic appliance: bad (1.0)

| | | | purpose = repairs: bad (1.0)
| | | | purpose = education: bad (1.0)

| | | | purpose = vacation: bad (0.0)

| | | | purpose = retraining: good (1.0)

| | | | purpose = business: good (3.0)

| | | | purpose = other: good (1.0)

| | | job = skilled

| | | | other_parties = none
| | | | | duration <= 30

| | | | | | savings_status = <100

| | | | | | | credit_history = no credits/all paid: bad (8.0/1.0)

| | | | | | | credit_history = all paid: bad (6.0)

| | | | | | | credit_history = existing paid

| | | | | | | | own_telephone = none

| | | | | | | | | existing_credits <= 1

| | | | | | | | | | property_magnitude = real estate

| | | | | | | | | | | age <= 26: bad (5.0)

| | | | | | | | | | | age > 26: good (2.0)
| | | | | | | | | | property_magnitude = life insurance: bad (7.0/2.0)

| | | | | | | | | | property_magnitude = car

| | | | | | | | | | | credit_amount <= 1386: bad (3.0)

| | | | | | | | | | | credit_amount > 1386: good (11.0/1.0)

| | | | | | | | | | property_magnitude = no known property: good (2.0)

| | | | | | | | | existing_credits > 1: bad (3.0)

| | | | | | | | own_telephone = yes: bad (5.0)

| | | | | | | credit_history = delayed previously: bad (4.0)

| | | | | | | credit_history = critical/other existing credit: good (14.0/4.0)

| | | | | | savings_status = 100<=X<500
| | | | | | | credit_history = no credits/all paid: good (0.0)

| | | | | | | credit_history = all paid: good (1.0)

| | | | | | | credit_history = existing paid: bad (3.0)

| | | | | | | credit_history = delayed previously: good (0.0)

| | | | | | | credit_history = critical/other existing credit: good (2.0)

| | | | | | savings_status = 500<=X<1000: good (4.0/1.0)

| | | | | | savings_status = >=1000: good (4.0)

| | | | | | savings_status = no known savings

| | | | | | | existing_credits <= 1

| | | | | | | | own_telephone = none: bad (9.0/1.0)
| | | | | | | | own_telephone = yes: good (4.0/1.0)

| | | | | | | existing_credits > 1: good (2.0)

| | | | | duration > 30: bad (30.0/3.0)

| | | | other_parties = co applicant: bad (7.0/1.0)

| | | | other_parties = guarantor: good (12.0/3.0)

| | | job = high qualif/self emp/mgmt: good (30.0/8.0)

| foreign_worker = no: good (15.0/2.0)

checking_status = 0<=X<200

| credit_amount <= 9857

| | savings_status = <100
| | | other_parties = none

| | | | duration <= 42

| | | | | personal_status = male div/sep: bad (8.0/2.0)

| | | | | personal_status = female div/dep/mar

| | | | | | purpose = new car: bad (5.0/1.0)

| | | | | | purpose = used car: bad (1.0)

| | | | | | purpose = furniture/equipment

| | | | | | | duration <= 10: bad (3.0)
| | | | | | | duration > 10

| | | | | | | | duration <= 21: good (6.0/1.0)

| | | | | | | | duration > 21: bad (2.0)

| | | | | | purpose = radio/tv: good (8.0/2.0)

| | | | | | purpose = domestic appliance: good (0.0)

| | | | | | purpose = repairs: good (1.0)

| | | | | | purpose = education: good (4.0/2.0)

| | | | | | purpose = vacation: good (0.0)

| | | | | | purpose = retraining: good (0.0)

| | | | | | purpose = business
| | | | | | | residence_since <= 2: good (3.0)

| | | | | | | residence_since > 2: bad (2.0)

| | | | | | purpose = other: good (0.0)

| | | | | personal_status = male single: good (52.0/15.0)

| | | | | personal_status = male mar/wid

| | | | | | duration <= 10: good (6.0)

| | | | | | duration > 10: bad (10.0/3.0)

| | | | | personal_status = female single: good (0.0)

| | | | duration > 42: bad (7.0)

| | | other_parties = co applicant: good (2.0)
| | | other_parties = guarantor

| | | | purpose = new car: bad (2.0)

| | | | purpose = used car: good (0.0)

| | | | purpose = furniture/equipment: good (0.0)

| | | | purpose = radio/tv: good (18.0/1.0)

| | | | purpose = domestic appliance: good (0.0)

| | | | purpose = repairs: good (0.0)

| | | | purpose = education: good (0.0)

| | | | purpose = vacation: good (0.0)

| | | | purpose = retraining: good (0.0)
| | | | purpose = business: good (0.0)

| | | | purpose = other: good (0.0)

| | savings_status = 100<=X<500

| | | purpose = new car: bad (15.0/5.0)

| | | purpose = used car: good (3.0)

| | | purpose = furniture/equipment: bad (4.0/1.0)

| | | purpose = radio/tv: bad (8.0/2.0)

| | | purpose = domestic appliance: good (0.0)

| | | purpose = repairs: good (2.0)

| | | purpose = education: good (0.0)
| | | purpose = vacation: good (0.0)

| | | purpose = retraining: good (0.0)

| | | purpose = business

| | | | housing = rent

| | | | | existing_credits <= 1: good (2.0)

| | | | | existing_credits > 1: bad (2.0)

| | | | housing = own: good (6.0)

| | | | housing = for free: bad (1.0)
| | | purpose = other: good (1.0)

| | savings_status = 500<=X<1000: good (11.0/3.0)

| | savings_status = >=1000: good (13.0/3.0)

| | savings_status = no known savings: good (41.0/5.0)

| credit_amount > 9857: bad (20.0/3.0) checking_status = >=200: good (63.0/14.0) checking_status = no checking: good (394.0/46.0)

Number of Leaves : 103

Size of the tree : 140

Time taken to build model: 0.07 seconds

	=== Stratified cross-validation ===

=== Summary ===
	

	Correctly Classified Instances
	705
	70.5
	%

	Incorrectly Classified Instances
	295
	29.5
	%

	Kappa statistic
	0.2467
	
	

	Mean absolute error
	0.3467
	
	

	Root mean squared error
	0.4796
	
	

	Relative absolute error
	82.5233 %
	
	

	Root relative squared error
	104.6565 %
	
	

	Total Number of Instances
	1000
	
	

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

	0.84
	0.61
	0.763
	0.84
	0.799
	0.639
	good

	0.39
	0.16
	0.511
	0.39
	0.442
	0.639
	bad

	Weighted Avg.
	0.705
	0.475
	0.687
	0.705
	0.692
	0.639

=== Confusion Matrix ===

a b <-- classified as

588 112 | a = good

183 117 | b = bad
Generated Output:
	Week: 7
	REMOVE ATTRIBUTES IN DATASET
	Date:

AIM: Write a procedure in WEKA for Check to see if the data shows a bias against "foreign workers" (attribute 20), or "personal-status"(attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka's GUI Explorer. Did removing these attributes have any significant effect? Discuss.

1. Procedure:

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select Attributes “Foreign workers” and “ Personal-status” and then click Remove button to remove from the list.
5. Select →choose→classifier→trees→j48 then click on the start button, then j48 algorithm is displayed in the window then right click on the trees.j48
6. In Test options select use training set and then click on the start button
7. Right side analysis report is displayed
8. Based on the result report the model
9. Go to Result list window and select trees.j48 and the right click select visualize tree
10. Draw the resulting tree

Expected Output:

=== Run information ===

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: german_credit-weka.filters.unsupervised.attribute.Remove-R9,20

Instances: 1000

Attributes: 19

 checking_status

 duration

 credit_history

 purpose

 credit_amount

 savings_status

 employment

 installment_commitment

 other_parties

 residence_since

 property_magnitude

 age

 other_payment_plans

 housing

 existing_credits

 job

 num_dependents

 own_telephone

 class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

J48 pruned tree

checking_status = <0

| duration <= 11

| | existing_credits <= 1

| | | property_magnitude = real estate: good (9.0/1.0)

| | | property_magnitude = life insurance

| | | | own_telephone = none: bad (2.0)

| | | | own_telephone = yes: good (4.0)

| | | property_magnitude = car: good (2.0/1.0)

| | | property_magnitude = no known property: bad (3.0)

| | existing_credits > 1: good (19.0)

| duration > 11

| | job = unemp/unskilled non res: bad (5.0/1.0)

| | job = unskilled resident

| | | property_magnitude = real estate

| | | | existing_credits <= 1

| | | | | num_dependents <= 1

| | | | | | installment_commitment <= 2: good (3.0)

| | | | | | installment_commitment > 2: bad (10.0/4.0)

| | | | | num_dependents > 1: bad (2.0)

| | | | existing_credits > 1: good (3.0)

| | | property_magnitude = life insurance

| | | | duration <= 18: good (9.0)

| | | | duration > 18: bad (3.0/1.0)

| | | property_magnitude = car: bad (12.0/5.0)

| | | property_magnitude = no known property: bad (5.0)

| | job = skilled

| | | other_parties = none

| | | | duration <= 30

| | | | | savings_status = <100

| | | | | | credit_history = no credits/all paid: bad (8.0/1.0)

| | | | | | credit_history = all paid: bad (6.0)

| | | | | | credit_history = existing paid

| | | | | | | own_telephone = none

| | | | | | | | employment = unemployed: good (3.0/1.0)

| | | | | | | | employment = <1

| | | | | | | | | property_magnitude = real estate: good (2.0)

| | | | | | | | | property_magnitude = life insurance: bad (4.0)

| | | | | | | | | property_magnitude = car: good (3.0)

| | | | | | | | | property_magnitude = no known property: good (1.0)

| | | | | | | | employment = 1<=X<4

| | | | | | | | | age <= 26: bad (7.0/1.0)

| | | | | | | | | age > 26: good (7.0/1.0)

| | | | | | | | employment = 4<=X<7: bad (5.0)

| | | | | | | | employment = >=7: good (2.0)

| | | | | | | own_telephone = yes: bad (5.0)

| | | | | | credit_history = delayed previously: bad (4.0)

| | | | | | credit_history = critical/other existing credit: good (14.0/4.0)

| | | | | savings_status = 100<=X<500

| | | | | | credit_history = no credits/all paid: good (0.0)

| | | | | | credit_history = all paid: good (1.0)

| | | | | | credit_history = existing paid: bad (3.0)

| | | | | | credit_history = delayed previously: good (0.0)

| | | | | | credit_history = critical/other existing credit: good (2.0)

| | | | | savings_status = 500<=X<1000: good (4.0/1.0)

| | | | | savings_status = >=1000: good (4.0)

| | | | | savings_status = no known savings

| | | | | | own_telephone = none

| | | | | | | installment_commitment <= 3: good (3.0/1.0)

| | | | | | | installment_commitment > 3: bad (7.0)

| | | | | | own_telephone = yes: good (6.0/1.0)

| | | | duration > 30: bad (30.0/3.0)

| | | other_parties = co applicant: bad (7.0/1.0)

| | | other_parties = guarantor: good (14.0/4.0)

| | job = high qualif/self emp/mgmt: good (31.0/9.0)

checking_status = 0<=X<200

| credit_amount <= 9857

| | savings_status = <100

| | | duration <= 42

| | | | purpose = new car

| | | | | employment = unemployed

| | | | | | installment_commitment <= 3: good (2.0)

| | | | | | installment_commitment > 3: bad (3.0)

| | | | | employment = <1: bad (7.0/2.0)

| | | | | employment = 1<=X<4: good (5.0/2.0)

| | | | | employment = 4<=X<7: good (5.0/1.0)

| | | | | employment = >=7: bad (5.0)

| | | | purpose = used car

| | | | | residence_since <= 3: good (6.0)

| | | | | residence_since > 3: bad (3.0/1.0)

| | | | purpose = furniture/equipment

| | | | | other_payment_plans = bank: good (2.0/1.0)

| | | | | other_payment_plans = stores: good (2.0)

| | | | | other_payment_plans = none

| | | | | | housing = rent: good (5.0/1.0)

| | | | | | housing = own: bad (14.0/5.0)

| | | | | | housing = for free: bad (0.0)

| | | | purpose = radio/tv: good (45.0/8.0)

| | | | purpose = domestic appliance: good (1.0)

| | | | purpose = repairs

| | | | | installment_commitment <= 3: good (3.0)

| | | | | installment_commitment > 3: bad (3.0/1.0)

| | | | purpose = education

| | | | | age <= 33: good (2.0)

| | | | | age > 33: bad (3.0/1.0)

| | | | purpose = vacation: good (0.0)

| | | | purpose = retraining: good (1.0)

| | | | purpose = business

| | | | | residence_since <= 3: good (10.0/2.0)

| | | | | residence_since > 3: bad (5.0)

| | | | purpose = other: good (1.0)

| | | duration > 42: bad (7.0)

| | savings_status = 100<=X<500

| | | purpose = new car

| | | | property_magnitude = real estate: bad (0.0)

| | | | property_magnitude = life insurance: bad (6.0)

| | | | property_magnitude = car

| | | | | residence_since <= 2: good (3.0)

| | | | | residence_since > 2: bad (4.0/1.0)

| | | | property_magnitude = no known property: good (2.0/1.0)

| | | purpose = used car: good (3.0)

| | | purpose = furniture/equipment: bad (4.0/1.0)

| | | purpose = radio/tv: bad (8.0/2.0)

| | | purpose = domestic appliance: good (0.0)

| | | purpose = repairs: good (2.0)

| | | purpose = education: good (0.0)

| | | purpose = vacation: good (0.0)

| | | purpose = retraining: good (0.0)

| | | purpose = business

| | | | housing = rent

| | | | | existing_credits <= 1: good (2.0)

| | | | | existing_credits > 1: bad (2.0)

| | | | housing = own: good (6.0)

| | | | housing = for free: bad (1.0)

| | | purpose = other: good (1.0)

| | savings_status = 500<=X<1000: good (11.0/3.0)

| | savings_status = >=1000: good (13.0/3.0)

| | savings_status = no known savings: good (41.0/5.0)

| credit_amount > 9857: bad (20.0/3.0)

checking_status = >=200

| property_magnitude = real estate

| | installment_commitment <= 3: good (15.0/3.0)

| | installment_commitment > 3: bad (6.0/1.0)

| property_magnitude = life insurance: good (12.0)

| property_magnitude = car: good (21.0/3.0)

| property_magnitude = no known property

| | num_dependents <= 1: good (7.0/1.0)

| | num_dependents > 1: bad (2.0)

checking_status = no checking: good (394.0/46.0)

Number of Leaves :
97

Size of the tree :
139

Time taken to build model: 0.41 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 861 86.1 %

Incorrectly Classified Instances 139 13.9 %

Kappa statistic 0.6458

Mean absolute error 0.2194

Root mean squared error 0.3312

Relative absolute error 52.208 %

Root relative squared error 72.2688 %

Total Number of Instances 1000

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.95 0.347 0.865 0.95 0.905 0.869 good

 0.653 0.05 0.848 0.653 0.738 0.869 bad

Weighted Avg. 0.861 0.258 0.86 0.861 0.855 0.869

=== Confusion Matrix ===

 a b <-- classified as

 665 35 | a = good

 104 196 | b = bad

This increase in accuracy is because thus two attributes are not much important in training and analyzing. By removing this, the time has been reduced to some extent and then its results in increase in the accuracy.

The decision tree which is created is very large compared to the decision tree which we have trained now. This is the main difference between these two decision trees.

Generated Output:

	Week: 8
	IDENTIFY THE ATTRIBUTE COMBINATION FOR OBTAINING GOOD RESULTS
	Date:

AIM: Write a procedure in WEKA for Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and 21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember to reload the arff data file to get all the attributes initially before you start selecting the ones you want.)

1. Procedure:

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select attributes except 2,3,5,7,10,17 and then click on the remove button.

5. Perform analysis based on the above attributes

6. Select →choose→classifier→trees→j48 then click on the start button, then j48 algorithm is displayed in the window then right click on the trees.j48
7. In Test options select use training set and then click on the start button
8. Right side analysis report is displayed
9. Based on the result report the model
10. Go to Result list window and select trees.j48 and the right click select visualize tree
11. Draw the resulting tree

12. Report the model different tree models.

Expected Output:

=== Classifier model (full training set) === J48 pruned tree

credit_history = no credits/all paid: bad (40.0/15.0)

credit_history = all paid
| employment = unemployed

| | duration <= 36: bad (3.0)

| | duration > 36: good (2.0)

| employment = <1

| | duration <= 26: bad (7.0/1.0)

| | duration > 26: good (2.0)

| employment = 1<=X<4: good (15.0/6.0)

| employment = 4<=X<7: bad (10.0/4.0)

| employment = >=7
| | job = unemp/unskilled non res: bad (0.0)

| | job = unskilled resident: good (3.0)

| | job = skilled: bad (3.0)

| | job = high qualif/self emp/mgmt: bad (4.0)

credit_history = existing paid

| credit_amount <= 8648

| | duration <= 40: good (476.0/130.0)

| | duration > 40: bad (27.0/8.0)

| credit_amount > 8648: bad (27.0/7.0)

credit_history = delayed previously

| employment = unemployed
| | credit_amount <= 2186: bad (4.0/1.0)

| | credit_amount > 2186: good (2.0)

| employment = <1

| | duration <= 18: good (2.0)

| | duration > 18: bad (10.0/2.0)

| employment = 1<=X<4: good (33.0/6.0)

| employment = 4<=X<7

| | credit_amount <= 4530

| | | credit_amount <= 1680: good (3.0)

| | | credit_amount > 1680: bad (3.0)
| | credit_amount > 4530: good (11.0)

| employment = >=7

| | job = unemp/unskilled non res: good (0.0)

| | job = unskilled resident: good (2.0/1.0)

| | job = skilled: good (14.0/4.0)

| | job = high qualif/self emp/mgmt: bad (4.0/1.0)

credit_history = critical/other existing credit: good (293.0/50.0) Number of Leaves : 27
Size of the tree : 40
Time taken to build model: 0.01 seconds

	=== Evaluation on training set ===

=== Summary ===
	

	Correctly Classified Instances
	764
	76.4 %

	Incorrectly Classified Instances
	236
	23.6 %

	Kappa statistic
	0.3386
	

	Mean absolute error
	0.3488
	

	Root mean squared error
	0.4176
	

	Relative absolute error
	83.0049 %
	

	Root relative squared error
	91.1243 %
	

	Total Number of Instances
	1000
	

=== Classifier model (full training set) ===

J48 pruned tree

credit_history = no credits/all paid: bad (40.0/15.0)

credit_history = all paid

| employment = unemployed

| | duration <= 36: bad (3.0)

| | duration > 36: good (2.0)

| employment = <1

| | duration <= 26: bad (7.0/1.0)

| | duration > 26: good (2.0)

| employment = 1<=X<4: good (15.0/6.0)
| employment = 4<=X<7: bad (10.0/4.0)

| employment = >=7

| | job = unemp/unskilled non res: bad (0.0)

| | job = unskilled resident: good (3.0)

| | job = skilled: bad (3.0)

| | job = high qualif/self emp/mgmt: bad (4.0)

credit_history = existing paid

| credit_amount <= 8648

| | duration <= 40: good (476.0/130.0)

| | duration > 40: bad (27.0/8.0)
| credit_amount > 8648: bad (27.0/7.0)

credit_history = delayed previously

| employment = unemployed

| | credit_amount <= 2186: bad (4.0/1.0)

| | credit_amount > 2186: good (2.0)

| employment = <1

| | duration <= 18: good (2.0)

| | duration > 18: bad (10.0/2.0)

| employment = 1<=X<4: good (33.0/6.0)

| employment = 4<=X<7
| | credit_amount <= 4530

| | | credit_amount <= 1680: good (3.0)

| | | credit_amount > 1680: bad (3.0)

| | credit_amount > 4530: good (11.0)

| employment = >=7

| | job = unemp/unskilled non res: good (0.0)

| | job = unskilled resident: good (2.0/1.0)

| | job = skilled: good (14.0/4.0)

| | job = high qualif/self emp/mgmt: bad (4.0/1.0)

credit_history = critical/other existing credit: good (293.0/50.0)
Number of Leaves : 27
Size of the tree : 40
Time taken to build model: 0.01 seconds

	=== Stratified cross-validation ===

== Summary ===
	

	Correctly Classified Instances
	703
	70.3 %

	Incorrectly Classified Instances
	297
	29.7 %

	Kappa statistic
	0.1759
	

	Mean absolute error
	0.3862
	

	Root mean squared error
	0.4684
	

	Relative absolute error
	91.9029 %
	

	Root relative squared error
	102.2155 %
	

	Total Number of Instances
	1000
	

Generated Output:

	Week: 9
	COST MATRIX USING CROSS VALIDATION
	Date:

AIM: Write a procedure in WEKA for Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might be higher than accepting an applicant who has bad credit (case 2). Instead of counting the misclassifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)?

Procedure:

In the Problem 6, we used equal cost and we trained the decision tree. But here, we consider two cases with different cost.

Let us take cost 5 in case 1 and cost 2 in case 2.

When we give such costs in both cases and after training the decision tree, we can observe that almost equal to that of the decision tree obtained in problem 6.

But we find some difference in cost factor which is in summary in the difference in the cost factor
 Case1 (cost 5) Case2 (cost 5)

Total Cost 3820 1705

Average cost 3.82 1.705
We don’t find this cost factor in problem 6. As there we use equal cost. This is the major difference between the results of problem 6 and problem 9.

The cost matrices we used here: Case 1:

	Week: 10
	SIMPLE Vs COMPLEX DECISION TREES
	Date:

AIM: Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees? How does the complexity of a Decision Tree relate to the bias of the model?

Procedure:

When we consider long complex decision trees, we will have many unnecessary attributes in the tree which results in increase of the bias of the model. Because of this, the accuracy of the model can also effected.

This problem can be reduced by considering simple decision tree. The attributes will be less and it decreases the bias of the model. Due to this the result will be more accurate.

So it is a good idea to prefer simple decision trees instead of long complex trees.

	Week: 11
	GENERATE DECISION TREE USING REDUCED ERROR PRUNING
	Date:

AIM: Write a procedure in WEKA for You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning - Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain ? Also, report your accuracy using the pruned model. Does your accuracy increase?

1. Procedure:

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select →choose→classifier→trees→REP tree then click on the start button, then REP tree algorithm is displayed in the window then right click on the REP tree
5. In Test options select cross validation and then click on the start button
6. Right side analysis report is displayed
7. Based on the result report the model
8. Go to Result list window and REP tree and the right click select visualize tree
9. Draw the resulting tree

10. Report the model different tree models.

Expected Output:

Reduced-error pruning:
The idea of using a separate pruning set for pruning- which is applicable to decision trees as well as rule sets- is called reduced-error pruning. The variant described previously prunes a rule immediately after it has been grown and is called incremental reduced-error pruning. Another possibility is to build a full, unpruned rule set first, pruning it afterwards by discarding individual tests.

 However, this method is much slower. Of course, there are many different ways to assess the worth of a rule based on the pruning set. A simple measure is to consider how well the rule would do at discriminating the predicted class from other classes if it were the only rule in the theory, operating under the closed world assumption. If it gets p instances right out of the t instances that it covers, and there are P instances of this class out of a total T of instances altogether, then it gets p positive instances right. The instances that it does not cover include N - n negative ones, where n = t – p is the number of negative instances that the rule covers and N = T - P is the total number of negative instances. Thus the rule has an overall success ratio of [p +(N - n)] T , and this quantity, evaluated on the test set, has been used to evaluate the success of a rule when using reduced-error pruning.

J48 pruned tree

checking_status = <0

| foreign_worker = yes

| | credit_history = no credits/all paid: bad (11.0/3.0)
| | credit_history = all paid: bad (9.0/1.0)

| | credit_history = existing paid

| | | other_parties = none

| | | | savings_status = <100

| | | | | existing_credits <= 1

| | | | | | purpose = new car: bad (17.0/4.0)

| | | | | | purpose = used car: good (3.0/1.0)

| | | | | | purpose = furniture/equipment: good (22.0/11.0)

| | | | | | purpose = radio/tv: good (18.0/8.0)

| | | | | | purpose = domestic appliance: bad (2.0)
| | | | | | purpose = repairs: bad (1.0)

| | | | | | purpose = education: bad (5.0/1.0)

| | | | | | purpose = vacation: bad (0.0)

| | | | | | purpose = retraining: bad (0.0)

| | | | | | purpose = business: good (3.0/1.0)

| | | | | | purpose = other: bad (0.0)

| | | | | existing_credits > 1: bad (5.0)

| | | | savings_status = 100<=X<500: bad (8.0/3.0)

| | | | savings_status = 500<=X<1000: good (1.0)

| | | | savings_status = >=1000: good (2.0)
| | | | savings_status = no known savings

| | | | | job = unemp/unskilled non res: bad (0.0)

| | | | | job = unskilled resident: good (2.0)

| | | | | job = skilled

| | | | | | own_telephone = none: bad (4.0)

| | | | | | own_telephone = yes: good (3.0/1.0)

| | | | | job = high qualif/self emp/mgmt: bad (3.0/1.0)

| | | other_parties = co applicant: good (4.0/2.0)

| | | other_parties = guarantor: good (8.0/1.0)

| | credit_history = delayed previously: bad (7.0/2.0)
| | credit_history = critical/other existing credit: good (38.0/10.0)

| foreign_worker = no: good (12.0/2.0)

checking_status = 0<=X<200

| other_parties = none

| | credit_history = no credits/all paid

| | | other_payment_plans = bank: good (2.0/1.0)

| | | other_payment_plans = stores: bad (0.0)

| | | other_payment_plans = none: bad (7.0)

| | credit_history = all paid: bad (10.0/4.0)

| | credit_history = existing paid
| | | credit_amount <= 8858: good (70.0/21.0)

| | | credit_amount > 8858: bad (8.0)

| | credit_history = delayed previously: good (25.0/6.0)

| | credit_history = critical/other existing credit: good (26.0/7.0)

| other_parties = co applicant: bad (7.0/1.0)

| other_parties = guarantor: good (18.0/4.0) checking_status = >=200: good (44.0/9.0) checking_status = no checking

| other_payment_plans = bank: good (30.0/10.0)

| other_payment_plans = stores: good (12.0/2.0)

| other_payment_plans = none

| | credit_history = no credits/all paid: good (4.0)

| | credit_history = all paid: good (1.0)

| | credit_history = existing paid

| | | existing_credits <= 1: good (92.0/7.0)

| | | existing_credits > 1

| | | | installment_commitment <= 2: bad (4.0/1.0)

| | | | installment_commitment > 2: good (5.0)
| | credit_history = delayed previously: good (22.0/6.0)

| | credit_history = critical/other existing credit: good (92.0/3.0)

 Number of Leaves : 47

Size of the tree : 64
Time taken to build model: 0.49 seconds

	=== Stratified cross-validation ===

== Summary ===
	

	Correctly Classified Instances
	725
	72.5 %

	Incorrectly Classified Instances
	275
	27.5 %

	Kappa statistic
	0.2786
	

	Mean absolute error
	0.3331
	

	Root mean squared error
	0.4562
	

	Relative absolute error
	79.2826 %
	

	Root relative squared error
	99.5538 %
	

	Total Number of Instances
	1000
	

Generated Output:

	Week: 12
	Generate IF-THEN-ELSE Rules and Rank the performance of j48,PART, and oneR
	Date:

AIM: Write a procedure in WEKA for How can you convert a Decision Trees into "if-then-else rules". Make up your own small Decision Tree consisting of 2-3 levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules - one such classifier in Weka is rules.PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one ! Can you predict what attribute that might be in this dataset? OneR classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and oneR.

1. Procedure 1: using PART rule

2. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

3. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

4. Select →choose→classifier→rules→PART then click on the start button, then PART algorithm is displayed in the window then right click on the PART rule
5. In Test options select use training set then click on the start button
6. Right side analysis report is displayed
7. Based on the result report the model
Expected Output:

=== Run information ===

Scheme:weka.classifiers.rules.PART -M 2 -C 0.25 -Q 1

Relation: german_credit

Instances: 1000

Attributes: 21

 checking_status

 duration

 credit_history

 purpose

 credit_amount

 savings_status

 employment

 installment_commitment

 personal_status

 other_parties

 residence_since

 property_magnitude

 age

 other_payment_plans

 housing

 existing_credits

 job

 num_dependents

 own_telephone

 foreign_worker

 class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

PART decision list

checking_status = no checking AND

other_payment_plans = none AND

credit_history = critical/other existing credit: good (134.0/3.0)

checking_status = no checking AND

existing_credits <= 1 AND

other_payment_plans = none AND

purpose = radio/tv: good (49.0/2.0)

checking_status = no checking AND

foreign_worker = yes AND

employment = 4<=X<7: good (35.0/2.0)

foreign_worker = no AND

personal_status = male single: good (21.0)

checking_status = no checking AND

purpose = used car AND

other_payment_plans = none: good (23.0)

duration <= 15 AND

other_parties = guarantor: good (22.0/1.0)

duration <= 11 AND

credit_history = critical/other existing credit: good (29.0/3.0)

checking_status = >=200 AND

num_dependents <= 1 AND

property_magnitude = car: good (20.0/3.0)

checking_status = no checking AND

property_magnitude = real estate AND

other_payment_plans = none AND

age > 23: good (25.0)

savings_status = >=1000 AND

property_magnitude = real estate: good (10.0)

savings_status = 500<=X<1000 AND

employment = >=7: good (13.0/1.0)

credit_history = no credits/all paid AND

housing = rent: bad (9.0)

savings_status = no known savings AND

checking_status = 0<=X<200 AND

existing_credits > 1: good (9.0)

checking_status = >=200 AND

num_dependents <= 1 AND

property_magnitude = life insurance: good (9.0)

installment_commitment <= 2 AND

other_parties = co applicant AND

existing_credits > 1: bad (5.0)

installment_commitment <= 2 AND

credit_history = delayed previously AND

existing_credits > 1 AND

residence_since > 1: good (14.0/3.0)

installment_commitment <= 2 AND

credit_history = delayed previously AND

existing_credits <= 1: good (9.0)

duration > 30 AND

savings_status = 100<=X<500: bad (13.0/3.0)

credit_history = all paid AND

other_parties = none AND

other_payment_plans = bank: bad (16.0/5.0)

duration > 30 AND

savings_status = no known savings AND

num_dependents > 1: good (5.0)

duration > 30 AND

credit_history = delayed previously: bad (9.0)

duration > 42 AND

savings_status = <100 AND

residence_since > 1: bad (28.0/3.0)

purpose = used car AND

credit_amount <= 8133 AND

existing_credits > 1: good (11.0)

purpose = used car AND

credit_amount > 8133: bad (8.0/1.0)

purpose = used car AND

employment = 1<=X<4: good (7.0)

purpose = used car: good (16.0/3.0)

purpose = furniture/equipment AND

other_payment_plans = stores: good (8.0)

credit_history = all paid AND

other_parties = none AND

other_payment_plans = none: bad (10.0)

purpose = business AND

residence_since <= 1: good (9.0)

other_payment_plans = stores AND

purpose = radio/tv AND

personal_status = male single: bad (6.0/1.0)

purpose = radio/tv AND

employment = >=7 AND

num_dependents <= 1: good (20.0/1.0)

installment_commitment <= 3 AND

purpose = furniture/equipment AND

other_parties = none AND

own_telephone = yes: good (19.0/3.0)

checking_status = no checking AND

savings_status = no known savings AND

personal_status = male single: good (11.0/1.0)

checking_status = 0<=X<200 AND

employment = 4<=X<7 AND

personal_status = male single AND

residence_since > 2: good (9.0)

purpose = other: good (5.0/1.0)

installment_commitment <= 2 AND

foreign_worker = yes AND

credit_history = existing paid AND

residence_since > 1 AND

other_parties = none AND

other_payment_plans = none AND

housing = rent AND

installment_commitment <= 1: good (9.0)

housing = rent AND

other_payment_plans = none AND

purpose = new car: bad (13.0/2.0)

other_payment_plans = stores AND

property_magnitude = life insurance: bad (4.0/1.0)

other_payment_plans = bank AND

other_parties = none AND

housing = rent: bad (7.0/1.0)

installment_commitment > 3 AND

existing_credits <= 1 AND

savings_status = <100 AND

credit_history = existing paid AND

purpose = new car: bad (17.0/5.0)

checking_status = >=200 AND

job = unskilled resident: bad (5.0)

duration <= 15 AND

property_magnitude = real estate: good (38.0/8.0)

foreign_worker = yes AND

property_magnitude = real estate AND

other_payment_plans = none AND

other_parties = none AND

duration <= 33 AND

own_telephone = yes: bad (7.0)

foreign_worker = yes AND

checking_status = <0 AND

purpose = education: bad (9.0/1.0)

foreign_worker = yes AND

purpose = education AND

checking_status = 0<=X<200: good (5.0)

foreign_worker = yes AND

checking_status = <0 AND

savings_status = 100<=X<500 AND

num_dependents <= 1: bad (6.0/1.0)

foreign_worker = yes AND

savings_status = >=1000 AND

checking_status = <0: good (4.0)

foreign_worker = yes AND

savings_status = 100<=X<500 AND

personal_status = male single: good (10.0/2.0)

foreign_worker = yes AND

existing_credits > 2: good (11.0/2.0)

foreign_worker = yes AND

other_parties = guarantor AND

other_payment_plans = none AND

existing_credits <= 1: good (6.0)

foreign_worker = yes AND

num_dependents > 1 AND

personal_status = male single AND

savings_status = <100 AND

job = skilled AND

duration > 16: bad (7.0)

foreign_worker = yes AND

other_parties = guarantor AND

purpose = radio/tv: bad (3.0)

foreign_worker = yes AND

credit_history = critical/other existing credit AND

job = unskilled resident: bad (6.0)

foreign_worker = yes AND

credit_history = no credits/all paid AND

housing = own: good (9.0/4.0)

foreign_worker = yes AND

credit_history = delayed previously AND

savings_status = <100 AND

existing_credits <= 1: bad (5.0)

foreign_worker = yes AND

credit_history = delayed previously AND

num_dependents <= 1: good (5.0)

foreign_worker = yes AND

credit_history = delayed previously AND

job = skilled: good (3.0/1.0)

foreign_worker = yes AND

credit_history = critical/other existing credit AND

other_parties = none AND

housing = own AND

savings_status = <100 AND

existing_credits > 1 AND

installment_commitment > 2 AND

credit_amount > 2181: bad (6.0)

foreign_worker = yes AND

credit_history = critical/other existing credit AND

other_payment_plans = bank: bad (5.0/1.0)

foreign_worker = yes AND

credit_history = critical/other existing credit AND

job = skilled AND

employment = 1<=X<4 AND

residence_since <= 3: good (6.0/1.0)

foreign_worker = yes AND

credit_history = critical/other existing credit: good (17.0/5.0)

foreign_worker = yes AND

credit_history = existing paid AND

checking_status = <0 AND

other_payment_plans = none AND

job = skilled AND

purpose = new car: bad (7.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

checking_status = no checking AND

duration <= 30 AND

residence_since > 1 AND

own_telephone = yes: good (4.0)

foreign_worker = yes AND

credit_history = existing paid AND

savings_status = no known savings: bad (18.0/6.0)

foreign_worker = yes AND

credit_history = existing paid AND

checking_status = <0 AND

other_payment_plans = bank AND

housing = own: bad (3.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

checking_status = <0 AND

other_payment_plans = none AND

purpose = radio/tv AND

job = skilled: bad (7.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

existing_credits <= 1 AND

purpose = radio/tv AND

age > 22: good (11.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

existing_credits <= 1 AND

installment_commitment > 3: bad (27.0/8.0)

foreign_worker = yes AND

credit_history = existing paid AND

other_payment_plans = bank: good (5.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

own_telephone = yes AND

installment_commitment > 2: bad (4.0)

foreign_worker = yes AND

credit_history = existing paid AND

existing_credits <= 1 AND

employment = 1<=X<4 AND

personal_status = female div/dep/mar AND

credit_amount > 1474: good (5.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

purpose = repairs: good (4.0/1.0)

foreign_worker = yes AND

credit_history = existing paid AND

purpose = furniture/equipment AND

property_magnitude = real estate: good (3.0)

foreign_worker = yes AND

credit_history = existing paid AND

housing = own AND

property_magnitude = life insurance: bad (8.0/3.0)

num_dependents <= 1 AND

foreign_worker = yes AND

credit_history = existing paid AND

checking_status = no checking: good (4.0)

credit_history = existing paid AND

housing = own AND

residence_since > 1: bad (8.0/2.0)

existing_credits <= 1 AND

num_dependents <= 1: good (8.0/2.0)

: bad (5.0)

Number of Rules :
78

Time taken to build model: 0.26 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 897 89.7 %

Incorrectly Classified Instances 103 10.3 %

Kappa statistic 0.7526

Mean absolute error 0.1605

Root mean squared error 0.2833

Relative absolute error 38.2073 %

Root relative squared error 61.8238 %

Total Number of Instances 1000

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.933 0.187 0.921 0.933 0.927 0.944 good

 0.813 0.067 0.838 0.813 0.826 0.944 bad

Weighted Avg. 0.897 0.151 0.896 0.897 0.897 0.944

=== Confusion Matrix ===

 a b <-- classified as

 653 47 | a = good

 56 244 | b = bad

 Procedure 2: using OneR rule

1. Go to start→All programs→weka 3-6-2→ then weka GUI chooser will be displayed in that selected weka explorer

2. In the weka explorer dialog box select open file option and load the credit-g-demo-dataset.arff in weka explorer window

3. Select →choose→classifier→rules→OneR then click on the start button, then OneR algorithm is displayed in the window then right click on the OneR rule
4. In Test options select use training set then click on the start button
5. Right side analysis report is displayed
6. Based on the result report the model
Expected Output:

=== Run information ===

Scheme:weka.classifiers.rules.OneR -B 6

Relation: german_credit

Instances: 1000

Attributes: 21

 checking_status

 duration

 credit_history

 purpose

 credit_amount

 savings_status

 employment

 installment_commitment

 personal_status

 other_parties

 residence_since

 property_magnitude

 age

 other_payment_plans

 housing

 existing_credits

 job

 num_dependents

 own_telephone

 foreign_worker

 class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

credit_amount:

< 883.0
-> good

< 922.0
-> bad

< 938.0
-> good

< 979.5
-> bad

< 1206.5
-> good

< 1223.5
-> bad

< 1263.0
-> good

< 1282.5
-> bad

< 1821.5
-> good

< 1865.5
-> bad

< 3913.5
-> good

< 3969.0
-> bad

< 4049.5
-> good

< 4329.5
-> bad

< 4726.0
-> good

< 5024.0
-> bad

< 6322.5
-> good

< 6564.0
-> bad

< 6750.0
-> good

< 6917.5
-> bad

< 7760.5
-> good

< 8109.5
-> bad

< 9340.5
-> good

< 10331.5
-> bad

< 11191.0
-> good

>= 11191.0
-> bad

(742/1000 instances correct)

Time taken to build model: 0.06 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 742 74.2 %

Incorrectly Classified Instances 258 25.8 %

Kappa statistic 0.2896

Mean absolute error 0.258

Root mean squared error 0.5079

Relative absolute error 61.4052 %

Root relative squared error 110.8409 %

Total Number of Instances 1000

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.917 0.667 0.762 0.917 0.833 0.625 good

 0.333 0.083 0.633 0.333 0.437 0.625 bad

Weighted Avg. 0.742 0.492 0.724 0.742 0.714 0.625

=== Confusion Matrix ===

 a b <-- classified as

 642 58 | a = good

 200 100 | b = bad

Procedure 3: RANKING performance of J48,ONER,andPART

1. The weka experiment environment enables the user to create,run,modify and analyze experiments in a more convenient manner than it is possible when processing the screen individually.

2. In weka experiment window click the advanced button then click the new button select the generated properties as enable then select split evaluator then select classifier button.

3. Then add the data set with the help of add new button in left below cornor. Then select choose button then in classifiers and select the PART then click add button.

4. similarly add ONER and J48.

5. then click the run tab and press the start button then it shows zero errors.

6. then select the analysis tab then open the data set with the help of file button then press the experiment button then press the performance test.

Expected Output:

[image: image9.jpg]Weka Experiment Environment

Setup | Run| Analse |

Saurce.

ot 30 results

Configure test Test output
Testing with | Palred T-Tester (cores. vailable resultsets
(1) rules.PART '-} 2 -C 0.25 -Q 1' 8121455039782598361
Row Select (2) rules.OneR '-B 6' -2459427002147861445

(3) trees.J48 '-C 0.25 - 2' -217733168393644444
Column Select

Comparison field [Percent_correct

sianficance [0.05

Sorting (asc.) by | <default>
Test base Select

Displayed Columns Select

Shawstd. deviations

IDIII
<

Output Format Select
Perform test Save output
Result st

1151119 - Avalable resusets

[image: image10.jpg]Weka Experiment Environment

[etup | Run | Anlyse |

Saurce.

ot 30 results

Configure test

Testing with | Paired T-Tester (correr.
Row Select
Column Select

Comparison field [Percent_correct

sianficance [0.05

Sorting (asc.) by | <default>
Test base Select

Displayed Columns Select
Shawstd. deviations

Output Format Select

IDIII
<

Farform st Save output

Result st

11551119 - Avallable resutsets
11:51:23 - Avallable resutsets
1152115 3 i

Test autput

Tester: weka.experiment.PairedCorrectedTTester
Bnalysing: Percent_correct
Datasets: 1

Resultsets: 3
0.05 (two tailed)

Confidenc

Dataset (1) rules.PA | (2) rules (3] trees

gernan_credit (10} 7411 es.3a% 7259

(/L (00 (0710

Rey:
(1) rules.PART '-} 2 -C 0.25 -0 1' 8121455039782598361
(2) rules.OneR '-B 6' -2459427002147861445

(3) trees.J48 '-C 0.25 - 2' -217733168393644444

Generated Output:
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY
 50

